"53704343

ARDCTRS

ARDC

TECHNICAL REPORT NO. 5

BRLESC i/11 FORTRAN

by

Lioyd W. Campbell
Glenn A. Beck

AD

DDC

23

[=m
\
G

March 1970 [" = i
ULWwiGl U Gl

This document has been approved for public release and sale:

its distribution is unlimited.

U.S. ARMY MATERIEL COMMAND
ABERDEEN RESEARCH AND DEVELOPMENT CENTER
ABERDEEN PROVING GROUND, MARYLAND

N

BLANK PAGES
IN THIS
DOCUMENT
WERE NOT

- FILMED

ey

ABERDEEN RESEARCH AND DEVELOPMENT CENTER

TECHNICAL REPORT NO. 5

L MARCH 1970

oy

BRIESC I/II FORTRAN

Lloyd W. Campbell
Glenn A. Beck

Computer Support Division

This document has been approved for public relzase and sale;
jts distribution is unlimited.

Funded by all ARDC RDT&E Projects

ABERDEEN PROVING GROUND, MARYLAND

ABERDEEN RESEARCHY AND DEVELOPMENT CENTER

TECHNICAL REPORT NO, 5

LWCampbell/GReck/eff
Aberdeen Proving Ground, Md.

March 1970

BRLESC Z,II FORTRAN

ABSTRACT

FORTRAN is a popular scientific programming language that has been
implemented on many computers. This report describes the FORTRAN
language in general and includes specific details about its implementa-
tion on the BRLESC I and BRIESC II computers at the Aberdeen Research

and Development Center.

mal

IIL.

I1I.

JA'S

VI.

VII.

VIII.

TABLE OF CONTENTS

ABSTRACT ¢ ¢« v o o o o & &
INIRODUCTION . o« & ¢ v ¢ & o« o o &
THE CHARACTER SET, . . .

SYMBCLIC NAMES AND CONSTANTS . . .

General Names . . « . « « + &
Statement Numbers
Constants . o o « o o o o &

Arrays . . v v 0 0 e e e e
ARITHMETIC EXPRESSIONS
ARITHMETIC ASSIGNMENT STATEMENIS .

IOGICAL EXPRESSIONS

Logical Assignment Statements .

Logical Masking Statements
SPECIFICATION STATEMENTS

DIMENSION . . « & ¢ ¢ & ¢ o &
COMMON . & & v o ¢ o o o o
EQUIVALENCE + . « « .
TYPE-STATEMENTS
EXTERNAL . . & ¢ o o o o & &

CONTROL STATEMENTS

GOTON FYE FECRGR N B RNk
GOTO (Computed) . « « & « « &
ASSIGN . & v . v ¢ o ¢ o o &
GOTO (Assigned)
IF (Arithmetic) . . . « . . .
IF (Logical) . . . « o « o« &
IF (Two Branch) . . « « « « .

Page

11
13
13

13
13
14
15

16
18
19

20
21

22

22
22
25
26
27

29
29
29
30
30
30
31

Xo

XI.

TABLE OF

DO
CONTINUE .
STOP . . .
PAUSE . . .
CALL . ..

CONTENTS (Continued)

Page

sl e ol L ISR I o eI s I (ST S T 31
B T 33
T 33
e s s e e s s e s e e s s e e e 34
B T T R 34

IF (SENSE SWITCH) and CALL SWITCH « & 35
SENSE LIGHT and CALL SLITE ¢« « « « & 36
IF (SENSE LIGHT) and CALL SLITET « & 36
IF ACCUMUIATOR and CALL OVERFL . . . « « « « « & 37
IF QUOTIENT OVERFLOW . « ¢ ¢« ¢ o ¢ o o o o o o o 37
IF DiVIDE CHECK and CALLDVCHK « . « . 37

FORMAT STATEMENT . ¢ o« « o o o o o o o o o s s o o o o 38

I and E Fields

F Fields .

H and ' Fields

® e & 8 & o o s & * o & o o s 41
e o & & & o & s o & s & s o s o 42
e o ¢ © © o o o o s ° s o o * o 43

k¥ $,Aand X Fields . . . ¢ v v v o v o o o o & 44
L,D,G,O0and RFields . . . ¢ ¢ ¢ ¢ ¢ o o & o & 45

Z Fields

® o o o & o o o o s o e ¢ o o s o 46

INHJT/OUTPUI LISTS L] . L] . L] . L] L] L] 47

INPIIT/OUTWT STATEMENTS e & o A & & & © s o o o o o o 49

READ(t,f) and READ INPUT TAPE . . « « & « « & & & 50
WRITE(t,f) and WRITE OUTPUT TAPE . . + « & &« « & 51
READ(t) and READ TAPE . . v ¢ ¢ ¢ o o o s o o o & 51
WRITE(t) and WRITE TAPE . . & v ¢ ¢ ¢ ¢ ¢ o o o o 52
END 'ETEE] & & & 2 @ o oile /3 Bl e o o 5o s fale s 52

BACKSPACE .
REWIND . .
READ . . .
PUNCH . . .

old o 33T EEBRg do ofdlg o 52
GGG e 030 0 930 O 53

TABLE OF CONTENTS (Continued)

m BRIESC I / II L] L] Ld % . . L] . .

Vertical Space Control

XII, DECODE AND ENCONE STATEMENTS . ,

ENCODE e & e 8 & e o o ¢ * e > s

\ XIII.. DATA STATEmT ® o o o o 8 o s o o s s o

XIV, SUBPROGRAM STATEMENTS . . . &« & « ¢ & o &

SUBROUTINE . . . v ¢ ¢ ¢ o o ¢ o o o

Dummy Arguments and Adjustatle
FUNCTION . &« o ¢ ¢ ¢ ¢ ¢ o o o o &
RETURN . . o s ¢ ¢ ¢ o o o o o o o
END . o ¢ ¢ ¢ ¢ o o v o o 6 6 a s
ENTRY « o ¢ ¢ ¢ ¢ ¢ o ¢ o o o o o &
BLOCKDATA ¢ ¢ ¢ o o &

FunCtionS . L] . . L L] . . L] . L] . L]

S R

Naming Functions « &

Use of Functions . . ¢« ¢« ¢ ¢ « o &

R . Statement Functions ., . . « « .« . &
XVI. PREDEFINED SUBROUTINES . . . + « « &« o+ .
XVII [F ORTMN PR%RAM CARDS . L] L] Ld . L] L L .

F (Cardsieel s Lol B B BNl e e 5 s

Bcards e« & © o 8 o o o s o ° o o

PRINT . . . L] L] . L] L] . L]
ADDITIONAL NOTES ON INPUT/OUTPUT STATEMENIS . .
ADDITIONAL NOTES ON THE USAGE OF MAGNETIC TAPE

Tape Unit Table

DEC ODE ® & & & ® 5 8 e * 5 & * o ¢ o o

Predefined Functions . . « « ¢« o o -

e o © o ¢ o

s o o o o

9 0 0 0 0
Dimensions

XV, PREDEFINED FUNCTIONS AND STATEMENT FUNCTIONS

Page

53

55
56
57

58

58
59

60
62

62

65
66
66
67
68

69

69
69

70
71

72
76

78
78

fanc aatas | ek iads

Sl L o e S anes Med Dt e dasit st bt it

 ieaaa s T B s i

XVIII.

XIX.

XXI,
XXII.
XXIII.
XX1v,
XXV,
XXVI.
XXV1il,
XXVIII,

XXIX,

TABLE OF CONTENTS (Continued)

D Catds e 8 8 o ¢ © & & o o o & O e o @ o s

Statement Arrangement . . ¢ ¢ ¢ o o ¢ o o o o
BRIESC I/II CONTROL CARDS AND DICTIONARY PRINTING
BRIESC I/II ASSEMBLY ORDERS . &« & « « ¢ s ¢ o o o

BRLESC I Assembly Language . ¢« « ¢ o o o o &
BRLESC II Assembly Language . « « « o o o » o

MAXTMUM TIME AND OUTPUT SPECIFICATIONS . . . « . .

MHXimum T im e & o 8 o o o s & o o o e+ o o

Maximum Qutput . . ¢ & ¢ ¢ o ¢ ¢ o ¢ o o o &
STATEMENT 98765 and 98766 . . « « o « o « o s o &
CHAIN JOBS o ¢ « o o o ¢ o o o o o a o ¢ s s o s o
COMPILING FROM TAPE 12 . . . ¢ v &+ ¢ o o s o o o
A PROGRAM TO WRITE PROGRAMS ON TAPE 12
BRLESC I/IIf COMPILER ERROR PRINIS , . . « « « « &
BRLESC I/II RUN ERROR PRINTS . . &+ « o o o & o o &
OPERATION OF BRIESC I/II COMPILERS «
SPEED OF BRIESC I/II FORTRAN COMPILING

CHECKLIST FOR CONVERTING OTHER COMPUTER FORTRAN
PROGRAMS TO BRLESC I/II FORTRAN . . . « « « « &

SUMMARY OF BRLESC I/II FORTRAN STATEMENTS
EFERENCES . . L] L] . L] . L] L] L] L] L] L] L] L] . L] L] L] L]
APPENDICES,

A, LIST OF PREDEFINED FUNCTIONS FOR
BRI‘ESC I/II L] L] . . L] . L] L] L] L] L] L3 L] .

B. THREE EXAMFPLES OF FORTRAN PROGRAMS . . .

Page

79
79

80
89

89
93

100

100
101

102
103
104
106
108
116
119

120

133

136

TABLE OF CONTENTS (Continued)

Page
C. SYMBOLIC AND SEXADECIMAL BRLESC I
ORDER TYES » [] [] [] 1] L] . L] [] . L . . L] . . 140
» D. SYMBOLIC AND SEXADECIMAL BRLESC II
:“ ORDER TYPES []) [] [] 1] E] . . L] . L] [] L] . [] » 144
. E. ARDC PRINTER CHARACTERS . . . « o ¢ « o o o 147
F. LISTING OF FORTRAN SUBPROGRAM
; CARD DECKS AVAIIABLE FROM
% SYSTEMS PROGRAMMING . « « o ¢ o o o o o o « 149
DISTRIBUTION LIST + v « v « « « o o o o o o o o « o & 163

G b

I. INTRODUCTION

FORTRAN is a programming language that is widely used on a variety
of computers and can be used on the Aberdeen Research and Development
Center's (ARDC) BRLESC I and BRLESC II computers. FORTRAN was designed
primirily for programming of scientific problems and the evaluation of
arichmetic formulas.

This ranual is inéended primarily as a reference manual for pro-
grammers that are already familiar with FORTRAN and the BRLESC I/II
computers; however, it includes a general description of the FORTRAN
language and should prove helpful to anyone who is iuterested in writ-
ing or reading FORTRAN prugrams. Additional details and general

information can be obtained from other FORTRAN menuzls and publications.

This marual emphasizes the details, restrictions and special
features of the larzuage as implemented on BRLESC I and BRLESC I1I.
FORTRAN iz not exactly the same on all computers, and it is not exactly
tne same on BRLESC I and BRIESC II. Although the general rules are
usually the same, differences in details do exist and some of these
differences are quite subtle. It is relatively easy to write FORTRAN
programs which when executed on different computers will yield different
results., These differences may be due to differences in compilers or
differences in the structures of the computers. However, most FORTRAN
programs require relatively minor modifications to allow them to run
on any given computer. The modifications usually require much less
effort and time than would be required to reprogram the problem in

another programming language.

There have been two prominent versions of the FORTRAN language.
They are referred to as FORTRAN II and FORTRAM IV. FORTRAN IV does not
include everything that was in FORTRAN II. However, the BRLESC I/II
compilers have retained essentially all of FORTRAN II so that it will
usually accept statements that are defined in either of these two ver-
sions of the FORTRAN language. A third ''version" cccurred in March
1966 when the American Standards Association (now called American Stand-
ards National Institute) published the document X.9-1966 which describes

I’RE(:E[IINIG1 PAGE BLANK

(4n et

the "standard" FORTRAN language. This standard lenguage is essentially
the same as FORTRAN IV and it was developed to promote interchangea-
bility of FORTRAN programs between computers, Although the standarc
neither precise nor complete enough to insure interchangeability, it
can be used as an aid in writing programs that will have a good chance
of proper execution on a variety of computers. It is recommended that,
whenever practical, programs be restricted to the standard statements
and features, This not only makes it easier to run a program at an-
other installation, but it will probably allow the program to run on
either BRLESC I or BRIESC IT and it will simplify the reprogramming
task when ARDC osbtains other computers. An attempt is made in this
manual to indicate those statements and features that are nonstandard.
In addition, any things labeled as applying specifically to BRLESC I/II
are also nonstandard. (Most of these things are specific details that
are not covered by the standard rather than being different from some-
thing that is in the stendard.) BRLESC I is more nonstandard than
BRLESC IT because the BRLLSC I compiler was written before the standard
existed,

12

I1. THE CHARACTER SET

FORTRAN allows the use of the twenty-six capital letters of the
alphabet, the decimal digits O to 9 and the special aymbols + - () .
* / , =$., (BRLESC II and some computers also allow ').

The card code for these characters is the same as normally used
for BRIESC 1I/II and most other computers and is sometimes referred to
as "BCD" code. (See Appendix E.)

Within Lollerith constants and hollerith informatior in formate,
BRLESC I/II allow the use of all 64 characters except BRIESC II does
not ailow # and \.

Within FORTRAN statements, the blank character is ignored except
within hollerith constants and hoilerith information in formats. Blanks
are not required within any statements and the insertion of blanks does

not change the meaning of the statement.

III. SYMBOLIC NAMES AND CONSTANTS

General Names

In FORTRAN, all symbolic names (other than statement numbers) must
begin with a letter and, for variables, the first letter usually deter-
mines the type of number it represents. Names of variables that begin
with I, J, K, L, M or N represent integer numbers unless they are de-
clared to be of some other type in a type-statement. Names beginning
with other letters (A-H, 0-Z) represent real (floating point) numbers

unless they are declared to be of some other type in a type-statement.

The length of symbolic names is restricted to six characters in
the standard and on most computers. A few computers allow eight charac-
ters. If names longer than six characters are used on BRLESC I/II, the
first five characters and the last non-F character will be used as the

name.

Statement Numbers

Locations of statements (cols. 1-5 of FORTRAN statement cards)

13

aluae e o) |

must be all decimal digits and thus look like integer numbers but are
really symbclic locations of statements. Leading zeros and all blank
t columns are ignored. (Statement numbers must be less than 32768 for
some computers, but not BRLESC I/II.) Oun BRLESC I/II, statement num-
bers may be written in place of a variatle name by writing an § after
the statement number, e.g., as an &argument in a CALL statement, 338
would represent statement number 33,

Constants

1. Integer constants are written without & decimal point. An
integer constant on BRLESC I/II may consist of 1 to 17 decimal digits.

Some computers restrict integer constants to as few as four decimal

digits.. The values of integer variables on BRLESC I/II must be less
than 264 in absolute value except the divisor and quotient of integer
divide operations must both be less than 234 in absolute value.
2. Real (floating point) constants must be written with a decimal
i point or an exponent. They may consist of a decimal point with 1 to 17

decimal digits (on BRLESC I/II) and may be followed by an E or D and a

signed decimal exponent. (The D indicates double precision constants,

however BRLESC I/II uses the same precision of sixteen decimal digits

for both single and double precision.) The decimal point is not requir-
. ed when there is an exponent. The BRLESC I/II range of floating point

-15
constants (and variables) is between 10155 and 10 L approximately in
absolute value with zero also allowed. Most computers have a more re-

stricted range of numbers,
Examples: 1. , 4,21, .2, 51.6 E2 , ,1E-3 , 3.1 D-1

3. Alphanumeric constants of ten or less characters are allowed
on BRLESC I/II. They rust be preceded by nH where n is the number of
characters in the constant. Blanks are not ignored in the n columns

after the H. For interchangeability, it is best to limit n to 4 or6,

14

BRLESC II also allows the ncnstandard form of enclosing alpha-
numeric constants in apostrophies with a maximum of ten characters be-
tween the two apostrophies, e.g., 'ABC'. The appearance of two coﬁsecu-
tive apostrophies between the enclosing apostrophies is considered to be
one character which is an apostrophe, i.e., to include one apostrophe
within this type of alphanumeric constant, insert two apostrophies.

For example, 'X""' is really X" and is actuzlly three characters long.

4, The logical constants allowed are " . TRUE." and ".FALSE.".
Note the use of a period at both the beginning and end of these con-

stants.

5. BRIESC I/II do not provide for standard complex arithmetic and
complex constants. On computers that allow complex constants, they con-
sist of the form (r, i) where r is the real part and i is the imaginary

part and both r and i are written as single precision real constants.

6. All octal constants are nonstandard. Octal constants must not
contain more than 22 digits on BRLESC I/II and the value must be less
than 264. Such constants are stored like integers at the rigat end of
a word. Negative octal constants are not allowed. Octal constants are
allowed only on FORTRAN II type boolean cards with a B in column one
(which are not allowed on BRLESC TI) and in DATA statements. In DATA

statements only, the octal digits must be preceded by the letter O.

Arrays

Blocks of storage are referred to as arrays in FORTRAN and are de-
clared in DIMENSION,COMMON or type-statements. Particular elements of
arrays are identified by subscripts enclosed iﬁ parentheses following
the name of the array, e.g., A(3) or B(I,J). One, two, or three ¢i-
mensional arrays may be used. Subscription of variables is done by
substitution (rather than addition) and the lower bound of all sub-
scripts is one, Subscript arithmetic is allowed; BRLESC I/II allow any
integer arithmetic expression that does not itself involve any sub-

scripted variatles. However, the most general expression allowed in

15

.

standard FORTRAN is C * V 1+ C' where C and C' are integer corstants and
V is an integer variable. Specifically, the only forms allowed by the
standard are; C' ,V ,V+C' ,V-C' ,C*V ,C*V+C' ,C*V-C'.

IV. ARITHMETIC EXPRESSIONS
The following symbols denote the following operationms:

+ addition

- subtraction

* multiplication
division

*% exponentiation

Tﬁe use of functions (routires with only one result) is also
allowed by writing the name of the function in front of parentheses
that enclose the arguments, e.g., SIN(X). (FORTRAW allows functions to
have more than one argument and commas are used to separate the argu-

ments.) The arguments may ve arithmetic expressions.

The precedence of operations when not governed by the use of

parentheses is

functions
%k

% and /

+ and -

where the operations higher on the ljist will be performed before those
that ave lower on the list. Successive + and - operations or suc-
cessive * and / operations will be performed from the left to the right.
Parentheses may always be used to cause the operations to be done in
any dcsired sequence. Successive exponentiations must always have pa-

rentheses to show the desired grouping.

The standard does not permit implied multiplication (although

some versions do allow it and BRLESC I/II allow it after a right pa-
renthesis).

16

A1l arithmetic within an expression nust be one type (integer or
real) except for integer subscripts, integer arguments and integer powers
of exponentiation in real expressions. The standard does permit real
{single precision) numbers to be combined arithmetically with double

precision or complex numbers.

Parentheses must not be omitted at the ends of an expression. The
number of left parentheses must be the same as the number of right pa-

rentheses in each expression.

Two operations must not appear adjacent to each other in formu-
las; e.g., / - or ¥ - . The - and + uperations may be used as unary
operations at the beginning of an expression or after a left parenthe-

sis, e.g., -A or (-A).

Any operation c¢n integers which does not yield an exact integer
result is truncated except negative integer results of division on
BRLESC I will give the greatest integer that does not exceed the alge-
braic exact result. Thus -42/10 will give -5 on BRLESC I but should
give -4,

From FORTRAN II on the 7090/7094, boolean expressions are allowed
on cards with a B in column one on BRIESC I. The symbols +, *, -
denote the logical operations of or (inclusive), and, and not respec-
tively. BRLESC I performs these operations on the rightmost 65 bits of
a word and the leading 3 bits of the word will be zeros after a logical
operation. Note that FORTRAN IV has provided a new way of writing

these logical operations as explained in Section VI below.

FORTRAN II double precision arithmetic expressions are allowed on
BRLESC I (a D in col. 1) but are done in BRLESC I single precision

which is as accurate as 7090/7094 double precision.

Complex arithmetic expressions are not presently allowed in
BRIESC I/II FORTRAN. An I in column one or a complex type-statement

will cause an error print.

17

V. ARITHMETIC ASSIGNMENT STATEMENTS
The general form of FORTRAN arithmetic assignment statements is
Vv = ae

where v is a name of an arithmetic variable (it may be subscripted)

and ae is an arithmetic expression., An example would bte
X(J+ 1) = A(J)**2 - V/(T + 3.)

The arithmetic expression is evaluated and the result is stored

as the new value of the variable whose name is on the left of the =

symbol,

No arithmetic may be performed on the left of the = symbol except
for subscript arithmetic. The standard and most computers allow only
one = symbol and hence only one variable will have its value changed by

an arithmetic formula.

However, BRLESC I/II allow up to 24 variables to be changed by the

result of one arithmetic expression by writing arithmetic statements

>f the form vn = ... = v2 = vl = age where the result is stored in vl,
v2, ..., vn and in that order, e.g., A = I = X is the same as two

statements I = X followed by A = I.

If the type of the variable on the left of the = symbol is differ-
ent than the type of the expression on the right of the = symbol, the
value of the expression is automatically converted to agree with the

type of the variable before it is stored.

The arithmetic expression may be just a name of a variable or

constant, e.g., X = A,

On BRLESC I/II, if the arithmetic expression is a hollerith con-
stant or contains a hollerith constant, the type of the variable v will
not cause a conversion to be done. For interchangeability, it is best
to use integer variables to contain hollerith information because an
attempt to convert it to real will almost always cause the information
to be changed. The standard does not allow hollerith constants to

appear in arithmetic expressions although most computers do allow this.

18

VI. LOGICAL EXPRESSIONS

FORTRAN permits the use of logical variables and expressions that
assume either the value .TRUE. or the value ,FALSE.. The fcllowing
three logical operations are defined using a and b to represent logical

variables or logical expressions:

.NOT.a is ,TRUE. when a is .FAISE, and is .FAISE. when
a is .TRUE.

a.AND.b is .TRUE. when both a and b are .TRUE. and is
.FAISE. when either a or b or both are ,FALSE.

a.0R.b is .TRUE. when either a or b or both are .TRUE.
and is .FALSE. only when both a and b are .FAISE.

Two adjacent logical operations may be used only when the second
one is ,NOT.. Thus .AND..NOT. is legal but .NOT..AND. is illegal.
The use of .NOT..NCT. is illegal but ,NOT.(.NOT. is legal.

A relational expression that consists of a comparison of two
arithmetic variables or expressions may be used to form logical ex-
pressions. FORTRAN uses the following relational operators: (x and y

represent arithmetic variables or arithmetic expressions.)

x.EQ.y is ,TRUE. only if x = y.
X.NE.y is .TRUE. only if x # y.
x.GT.y is ,TRUE. only if x > y.

X.GE.y is ,TRUE. only if x 2 y.
x.LT.y is ,TRUE. only if x < y.
x.LE.y is .TRUE. only if x < y.

Whenever the relational expression is not .TRUE., it is ,FAISE..
The arithmetic quantities x and y must be of the same type in any one
relation unless one is real and one is double precision, e.g., if I is

integer in I.LT.J, then J must also be integer.

19

i S iia AR @ Lo |

On BRLESC I/II, the operands for .EQ. and .NE. could be logical

variables but this is not true for most other computers.

It is illegal to use one arithmetic quantity as the operand for
more than one relation. Hence the mathematical expression x <y <z
must be written as X.LT,.Y.AND,Y.LT.Z and not as X,LT,Y.LT.Z.

A logical expression is any legal combination of logical oper-
ations and relational expressions. Parentheses may be used to obtain
any desired grouping of operations. In the absence of parentheses,

the operations are performed in the following order:

Arithmetic operations: Functions
ok

* and /

+ and -
Relations: 1T..LE,.EQ..NE,.GT..GE.
Logicel operations: .NOT.

LAND.

.OR.

Note that all the relations have equal precedence which means
that they will normally be evaluated from left to right. Note also
that .NCT. has a higher precedence than .AND. and .OR. and hence will
be performed before the other two logical operations.

Logical Assignment Statements:

Logical expressions may be used in logical IF statements (see
Section VIII, item 6) and in logical assignment statements. lLogical
assignment statements have the general form

v =le

where v is the name of a logical variable and le is a logical ex-
pression. The value stored in v will be .TRUE. or .FALLE. as deter-
mined by the evaluation of the logical expression le,

20

Examples of logical assignment statements:

(I,J,X and Y represent arithmetic variables and A,B and C represent

logical variables.)

A = ,FAISE,

A ,AND. .NOT.B

.NOT. (A.OR.B)

I,LE,3

I.FQ.J.AND, (B.OR.X.LE.Y)

3.7.416.GT.%+Y.OR.I*J,GT.1000

O W P w O
n

logical Masking Statements:

To improve compatibility with CDC FORTRAN, BRLESC I/II allow non-
standard logical masking statements. The operations .NOT.,AND., and
.OR. may be used with arithmetic operands to accomplish bit-by-bit logi-
cal operations using the last 65 bits of BRLESC I words and all 68 bits
of BRLESC II words.

An example of a logical masking statement would be
T = X,AND, ,NOT.Y

vwhere X and Y are arithmetic variabies (real or iateger) and T may be
any type of variable, This example will do a bit-by-bit product of X
and the complement of Y and will store this result in T without any

conversion.

21

VII., SPECIFICATION STATEMENTS

This group of statements (DIMENSION, COMMON, EQUIVALENCE, EXTERNAL
and type-statements) provides informetion to the compiler and may be
used by the programmer to control the storage assignment of some or all
of the variables. These statements do not cause any machine code to be
generated for running the program; they only affect the way it is com-
piled.

1. DIMENSION Statement:
DIMENSION a(i), b(il,i2), <(13,i4,i5),...

vwhere a,b,c are array names and the i's are integer constants or

integer dummy arguments.

This statement is used to declare the names aud maximum sizes of
arrays., The maximum subscripts are enclosed in parentheses and they
must be decimal integer constants except integer dummy arguments may be
used in subprograms if the array being declared is also a dummy argu-
ment. (See SUBROUTINE statement description.) The minimum subscript
is always taken to be one. One, two, or three dimensional arrays may

be declared in any sequence.

Arrays may also be declared in COMMON and type-statements with
only one declaration allowed for the same array. BRLESC I requires

that the very first appearance of an array name must be its declaration.
Example: DIMENSION T(41),X(10),E(4,4,4),A(3,7)
2., COMMON Statement:
COMMON a,b,c,d,e,...

vhere a,b,c,d,e are the names of variables of any type. Dummy argu-

ment names are not allowed,

This statement allows the programmer to specify that certain
variables and arrays are the same in more thar one program or subpro-
gram (subroutine or function). The storage a signed to those items in

the COMMON statements in one subprogram is the same storage assigned to

22

the items in the COMMON statements in each of the other subprograms and
the main program. Thus it also hes an equivalence effect between sub-
programs. Note that correspondence is by storage and not by name, i.e.,
variables of the same name in different subprograms are the same only
if they are assigned the same storage. All storage used in each sub~
program is different than the storage in any other subprogram except

for the items that are listed in COMMON statements.

Within each subprogram, all COMMON variables are assigned con-
secutively in the sequence in which they appear. The starting point
for all the subprograms within each total program is the same. Proper

space is left for arrays.

COMMON statements are used to avoid listing many avguments when
using a subprogram. By forcing the main program and subpregrams to
use the same storage for some (and possibly all) of the variables, the

need for specifying and moving variables is removed.

If any COMMON variable also appears in an EQUIVALENCE statement,
the COMMON assigning has priority and is done first.

Dimension information may be specified in COMMON statements.
However any one arrav must not be dimensioned more than oance in the
same program or subprogram, i.e., if an array rame in a COMMON state-
ment contains dimension information, it must not also be dimensioned in

a DIMENSION or type-statement.

Standard FORTRAN and FORTRAN IV allow labeled COMMON blocks. A
group of names may be preceded by a slash, a label name and another
slash to give a name (label) to a section of the COMMON storage area,
By using labeled COMMON, it is not necessary to think of COMMON as one
big block. Whenever the same label is used in different subprograms,
the corresponding members of the two labeled blocks will be assigned
the same storage positions regaerdless of the relative position of the
label within the respective COMMON statements. The following example
will illustrate the meaning of labeled COMMON. If the first of the

23

e M

>

i

M b

—

following COMMON statements appedrs in one subprogram and the second
COMMON statement appears in a different subprogram within the same com-

plete program,

COMMON A,X/IA/B,I,W/AA/P,M,N

COMMON A, Y/AA/r M1,N1/1A/E,J,W//Z

then the names A,P and W refer to the same quantity in both of the sub-
programs, The names X,B,I,M and N within the first subprogram refer to
the same quantities respectively as the names Y,E,J,Ml and N1 in the
second subprogram. In the second subprogram, the blank COMMON consists
of A,Y and Z because two consecutive slashes cause the following
quantities to be added to the blank COMMON block. Blank COMMON blocks
do not have to be the same length in each subprogram. However labeled
COMMON blocks of the same label must be the same length whenever thay
are used in different subprograms within the same complete program ex-
cept BRIESC I only requires that the longest one appear first.

{length is defined as the amount of memory space used.) Any common
block, including blank common, can be lengthened by an EQUIVALENCE
statement except BRLESC I does not allow lengthening of labeled common
blocks. 1Label names may be any legal FORIRAN name except the names of
subroutines and functions may not be used., It is permissible to use

the same name for a label and a variable within the same subprogram.

A subprogram may have more than one COMMON statement., Additional
COMMON statements simply extend the list of COMMON variables. The use
of the same label again within the same subprogram simply extends the
list of variables in that labeled block. Thus the two consecutive

statements

COMMON A,B,C/T/F,G
COMMON E/T/R,S//V

are the same as the single statement

COMMON A,B,C,E,V/T/F,G,R,S

24

On RRLESC I/II, the statements COMMON{USE MAIN) or COMMON(USE
PREVIOUS) mey be used instead of repeating long COMMON statements in
a subprogram when all of the COMMON variables are identical with tle
main program or the previous subprogram. BRIESC II will assign double
precision variables two storage positions when they appear in COMMON
statements. However BRLESC I will assign only one storage position
which can cause incorrect correspondence if a double precision variable

was supposed to correspond to two real, integer, or logical variables.
3. EQUIVALENCE Statement:
EQUIVALENCE (a,b,c,...),(d,e,f,...),...

where a,b,c,d,e,f are names of any type of variable or subscripted

array name. Dummy argument names are not allowed.

This statement causes different names to be assigned to the same
storage space, All the names within a set of parentheses are made

equivalent by assigning them the same storage space.

Subscripts on array names may be either a single integer constant
or the proper number of integer constant subscripts, i.e., the correct
number of dimensions. BRIESC I/II allow array names without subscripts
to imply the first element of the array. BRLESC I also allows a single
subscript on nonarray names; it acts like an increment when the storage

is assigned and a subscript of one is the same as no subscript.

Whenever arrays are partially or completely overlapped, space is
always reserved for all of the arrays involved so that there is no un-
expected overlapping of storage. However, EQUIVALENCE will not rear-
range COMMON storage; so equivalencing a larger array with a member of

COMMON may cause additional overlapping of storage space.

It is illegal to use EQUIVALENCE to try to cause any impossible
arrangement of storage. It cannot be used to attempt to cause non-
consecutive spaces to be assigned to elements of an array, to extend
backward the beginning of the COMMON storage area or to equivalence two
variables that are beth in COMMON. It is also illegal for names of

25

dummy arguments to appear in an EQUIVALENCE statement.

It is permissible to use EGUIVALENCE to extend the end of blank
comuon or any labeled common block except BRIEZC I does not permit such

lengthening of a labeled common block.

On BRLESC I, it is illegal to equivalence anything to itself,

either directly or indirectly.

On BRLESC I, any EQUIVALENCE statement that contains names of
arrays and variables that are also in COMMON statements must =prear

after the DIMENSION and COMMON statements.
Example: EQUIVALENCE (A,B),(F(2,1),C,H(1))
4, Type-Statements:

Type-statements may be used to declare that specified variable
names represent variables of a specified type. If a name does not
1 appear in a type-statement, then its first letter determines whether
] it represents an integer or a real (floating point) number., However,
a type-statement near the beginning of a program may be used to override
(or confirm) the automat.c type assignment or to declare a variable to
be of some other type. A function name may appear in a type-stat.ment

. if it is not the name of the subprogram containing the type-statement.
The following are type-statements:

1 INTEGER a,b,c,...

3 REAL a,b,c,...

DOUBLE PRECISION a,b,«,...
LOGICAL a,b,c,...

COMPIEX a,b,c,...

where a,b,c,... represents a list of variable and function names. On
BRLESC I/II, DOUBLE PRECISION is used the same as REAL since double
precisicn on most other computers is the same as BRLESC I/II single
precision and the COMPLEX statement is not allowed because complex

arithmetic is not allowed.

26

Variable array names in type-statements may also contain dimension
information. However the same variable must not slso be dimensioned
elsewhere, i.e., it must not also appear in a DIMENSION statement or be

dimensioned in a COMMON statement.

The names of all logical variables must be declared in a LOGICAL
statement as there is no other method of distinguishing them from other

variables.

The type-statements must precede all of the executable statements
and DATA statements within each subprogram or main program. Note that
type-statements are nonexecutable; they cannot be used between execu-

table statements to cause any execution data conversion.

BRLESC I/II allow any cof these type-statements to be preceded with
the word TYPE because CDC FORTRAN allows this. It is for this reason
that the names TYPEI, TYPER, TYPED, TYPEL and TYPEC must not be used as
names of variables at the beginning of any statement on BRLESC I and at
the beginning of the first executable statement (within each subprogram)
on BRLESC II. (CDC and BRLESC I/II do not use the word PRECISION when
DOUBLE is preceded by TYPE.)

BRLESC II will ignore an * and a decimal integer after the initial
word of a type-statement and after a name, e.g., REAL * 8 M, R * 4, K
is the same as REAL M, R, K.

Examples of type-statements:

REAL MASS, N2,IA(5,6),X
INTEGER A,F,I(15)
LOGICAL LV,T,WAY,LOW(18),NOW

5. EXTERNAL Statement:

FORTRAN requires this statement to be used whenever names of sub-
routines and functions are used as arguments for other subroutines or
functions. It serves the same purpose as the card with F in column one

did in some FORTRAN II compilers. The general form of the statement is:

27

EXTERNAL a,b,c,...
where a,b,c,... represents a list of function and subroutine names.

For BRLESC I, any statement function names used as arguments must
also appear in an EXTERNAL statement. However, standard FORTRAN does
not allow statement function names to appeer in EXTERNAL statements or
to be used as actual arguments. For BRLESC I, if the name of a function
appears in both a type-statement and an EXTERNAL statement, the type-
statement must precede the EXTERNAL statement.

Example:

EXTERNAL SIN,COS,FUN

28

VIII. CONTROL STATEMENTS

This group of statements provides for controlling the sequence in
which statements are executed. Unconditional transfer of control,
which is sometimes called branching or jumping, is provided by several
types of GOTO statements and conditional transfer of control is pro-
vided by several types of IF statements. A DO statement allows defi-
nition of a "loop" and a CALL statement causes transfer of control to a
subroutine with a return to the next statement. There are two state-
ments, STOP and PAUSE, that cause the program to stop running. In the
absence of control statements, the executable statements are executed
consecutively in the order of their physical appearance beginning with

the first executable statement of the main program.
1. GOTO Statement:

GOTO s
where s is a statement number. This statement causes the statement num-
bered s to be executed next.

Example: GO TO 22
2. Computed GOTO Statement:

GOTO(sl,s82,s83,...), i
where s1,s2,s3,... are statement numbers and i is a nonsubscripted in-
teger variable., The statement executed next depends on the value of the
variabie i. If i = 1,statement sl is done next; if i = 2, statement s2
is done next; etc., It is illegal for the value of i to be zero, nega-

tive, or larger than the number of statement numbers specified.

On BRLESC I/II, i = O causes the computer to cycle on one jump
instruction that jumps to itself and an i that is too large causes the
compuiter to jump to some statement or portion of statement that physi-
cally follows the computed GOTO statement. BRLESC I/II allows a maxi-

mum of 100 statement numbers to appear in this statement.
Example: GOTO0(4,19,462),K

3. ASSIGN Statement:

.

ASSIGN s TO i
where 8 i8 a statement number and i is a nonsubscripted integer variable.
This statement is used only in conjunction with the 'assigned GOTO"
statement (see 4. below) and is to be executed prior to the execution of
the assigned GOTO statement. After execution, the value of i is not an

integer number. On BRIESC I/I1I, it is the address of the statement num-
bered s.

Example: ASSIGN 64 TO M
4, Assigned GOTO statement:

GOTO i, (sl,s2,s3,...)
where 1 is a nonsubscripted integer variable and sl,s2,s3,... are
statement numbers. This statement cauvses statement sl,s2, or s3 etc.
to be executed next depending on which statement number was assigned
to 1 by the previous execution of an ASSIGN statement. BRLESC I/II do
not check whether or not the assigned statement number appears in the
list and do not even require that the list appear although the list

should be included as documentation and it is required by the standard.

Example: ASSIGN 44 TO N
GOTO N, (16,29,44,192)

5. Arithmetic IF Statement:

IF(ae)sl,s2,s3
where ae is an arithmetic expression and sl,s2, and s3 are statement
numbers. This statement causes statement sl,s2 or s3 to be executed

next depending on whether the value of ae is negative, exactly zero, or

positive respectively.

Examples: IF(X)4,7,22
IF (R*V-4,.1%(U+V))16,244,16

6. Logical IF Statement:
IF (le)st

where le is any logical expression and st is any executable statement

30

except a DO statement or another logical IF statement. The statement st
is executed if the value o¢f the iogical expression is .TRUE. and con-
trol simply goes to the next sequential statement if the value is
.FALSE.,

Examples:
IF (X.LT.5..AND.L.GE.70)GOTO 49
IF (I+J.EQ.14.0R. PRT)WRITE (2,16)A,B,C

(where PRT is a logical variable)
7. Two Branch IF Statement:

IF (e)sl,s2
where e is either a logical or arithmetic expression and sl and s2 are
statement numbers. This statement is not standard but is allowed on
BRLESC I/II and CDC computers. Statement sl is executed next if e is
.TRUE. (or nonzero for arithmetic expressions) and statement s2 is ex-

ecuted next if e is .FAISE, (or zero for arithmetic expressions).

Examples: IF(X)22,471
IF (X.GT.0, ,AND.L)962,1075

8. DO Statement:

[

DO s i =1i1,i2,i3
or

DO s 1 = il,i2
where s is a statement number, i is a nonsubscripted integer variatle
and il,i2,i3 are unsigned integer constants or nonsubscripted integer
variables that must be greater than zero when the DO statement is ex-
ecuted. The statement numbered s is called the terminal statement and
it must physically appear somewhere after the DO statement. The sequence
of statements that appear physically following the DO statement down to

and including the terminal statement is called its range.

A DO statement causes its range to be executed repeatedly with
the integer variable i initially assuming the value of il. The variable

i is incremented by i3 after each execution of the terminal statement

31

and the sequence is repeated if “he new value of i does not exceed i2.
If i1 > i2 initially, CDC FORTRAN will not execute the loop even once
whereas BRIESC I/II and most other computers will always execute a DO
loop at least once. Standard FORTRAN does not permit il > i2 in-
itially.

The specification of i3 is optional, If i3 is not specified,

its value is taken as one,

The terminal statement must be executable and not any form of
GOTO, arithmetic IF, RETURN, STOP, PAUSE, or DD Statement, nor any logi-

cal IF statement containing any of these statements.

For standard FORTRAN, the DO parameters, i,il,i2 and i3, must
not be changed within the range (or extended range) of the associated
DO statement. BRLESC I/II will allow these parameters to be changed.

If a DO loop is exited by some statement other than the normal
completion of the loop, the variable i will have its most recent value
available for use. However, this variable is not available when the
loop completes execution in the normal manner because not all computers
will have i set to the same value. BRLESC I/II will have i set to the
value that it would have had if the loop would have been executed one
more time, i.e., the first value of i that exceeds i2 or il + i3,
whichever is larger. The variable i is available within the range (and

extended range) for use as either a subscript or integer variable.

In standard FORTRAN, it is illegal to transfer control into the
range of a DO loop from outside its range (except for a return from an
extended range), i.e. the DO statement must always be executed before

any statements within its range are executed.

A DO range may contain other DO statements. However, any DO
statement that appears within the range of another DO statement must
terminate on or before the terminal statement of the DO statement that
appeared first. More than one DO statement may use the same terminal

statement.

32

T

vy

If a group of statements are logically but not physically with-
in the range of a DO statement, that group of statements is called in
extended range. BRLESC I/II do not have any special restrictions on the
use of one or more extended ranges. However the standard allows extend-
ed ranges only from the innermost range of a '"completely nested nest'
of DO loops and does not allow an extended range to contain any DO
statements that have extended ranges., A completely nested nest is a
group of DO loops, which must include all DO statements that are in the
range of the first DO statement of the group, where all of the DO state-
ments appear before any of the ranges are terminated and the first DO

statement of the group is not in the range of any other DO statement.

1,k
MIN, 55, NSTEP

Examples: 10 4Z K
' DO 3 JT

9. CONTINUE Statement:
CONTINUE

This is a dummy statement that generates no cbject code except
when it is the terminal statement of a DO loop. It must be used as the
terminal statement of a DO loop whenever the last statement would have
been an arithmetic IF or GOTO type of statement that transfers control,
Whenever a CONTINUE statement is the terminal statement of a DO loop on
BRLESC I/II, its statement number is the location of the machine in-

structions that increment the DO variable and test for its maximum value,
10. STOP Statement:

STOP or STOP w
where w is an octal constant of not more than five digits that is ignor-'

ed.

This statement causes the execution of a program to be termi.-
nated and should be used only to indicate that the program has run to
completion. This statement causes BRIESC I/II to e.nty the tape output
buffers, rewind all tapes used by the program th-.c have not been rewound,

check for overflows and halt at N4O. On BRLES. I/II, the program may

33

also be terminated by reading a card or tape line that has the first ten
4 characters of either “ENDbTAPEbbL" or "bbbbbbPROB" where b represents a
blank.

Examples: STOP
STOP 77

11. PAUSE Statement:

PAUSE or FAUSE w

where w 18 an octal constant of not more than five dlgits.

This statement causes the program to halt and display the oc-
tal constant. (BRLESC I displays it in the o address of the halt
order. . BRLESC II displays it in the A register and in the address o:
the halt order.) If th? computer is restarted manually by pressing
the proper button (initiate on BRLESC I/II), the program will continue

with the next statement.

This statement should not be used without a very good reason

for using it.

Examples: PAUSE
PAUSE 421

12. CALL Statement:

CALL a(b,c,d,.....)
or
CALL a

This statement causes the gfubroutine named "a'" to be entered
and executed with b,c,d,... as the arguments. (Arithmetic expressions
? are allowed as arguments.) The subroutine being called must be one
t whose code is included in the program as a SUBROUTINE subprogram ur one
that is automatically made available by the compiler.

The arguments used in a CALL statement must agree in type with

the type of the dummy arguments that were used when the subroutine was

34

defined. If there are no arguments, they may be omitted,

CALL EXIT or CALL DUMP statements on BRLESC I/II are the same
as a STOP statement and CALL PDUMP is ignored.

Alphanumeric constants of ten or less characters are allowed

as arguments on BRLESC I/II.

BRLESC I/II allow "blank arguments'" to be used¢ by omitting an
argument name and writing just a comma except that the last argument
must not be blank. Blank arguments are actually optional arguments and
may only be used with subroutines (and functions) that specifically

allow them.

Examples: CALL SUB3(X,Y,R)
CALL TOTAL

13. Test Sense Switch Statement:

IF (SENSE SWITCH %) si,s2
where i is an integer constant (1 < i < 6) and sl and s2 are statement

numbers.

This nonstandard statement transfers control to statement sl
or s2 if sense switch i is down or up respectively. On BRLESC I, the
manual reed switches 15-20 are used as sense switches 1 to 6 respect-
ively. On BRLESC II, the manual read switches labeled 33, 37, 41, 45,
49, and 53 are used as sense switches 1 to 6 respsctively; L is "up",
any other value is "down'. However, these switclies may be preset by a
program control card to be either "down'" or "up" regardless of their

actual position. (See SEISSW in Section XVIII.)
Example: IF (SENSE SWITCH 3)14,92

FORTRAN IV does not usually aliow this statement. Instead a

subroutine SSWICH is predefined. The general form of its use is

CALL SSWTCH (i,j)
where i is the number of the sense switch to be tested and j is set to

1 if it is down and j is set to 2 if it is up.

35

14. sSet Sense Light Statement:

SENSE LIGHT i
where i is an integer constant (0 < i <4). If i is O, then all sense
lights are turned off. If 1 < i <4 (actually 6 on BRLESC I), sense
light i orly will be turned on. The rightmost four (actually six) bits
of cell 062 on BRLESC I are used as sense lights. Initially on BRLESC
I, all of them are off. This is a nonstandard statement and is not
allowed on BRLESC II.

Example: SENSE LIGHT 2

FORTRAN IV does not usually allow this statement, Instead, a

subrouvtine SLITE is predefined. The general form of its use is

CALL SLITE(i)
where i is the number of the sense light to be turned on. If i =0,
all sense lights are turned off. BRLESC II allows the SLITE subroutine.

15. Test Sense Light Statement:

IF (SENSE LIGHT i)sl,s2
where i is an integer constant (1 < i < 4) and sl and s2 are statement
numbers., If sense light i is on, it is turned off and statement sl is
executed next; otherwise statement s2 is executed next. BRLESC I allows
i to be as large as 6. This is a nonstandard statement and is not
allowed on BRIESC II.

Example: IF (SENSE LIGHT 2)67,39

FORTRAN IV does not usually allow this statement. Instead, a

subroutine SLIT". is predefined. The general form of its use is

CALL SLITET(i,j)
where i is the number of the sense light to be tested and turned off.
If the light was on, j will be set to 1 and if the light was off, j
will be set to 2. BRLESC II allows the SLITET subroutine with
0<i=x<6é.

36

16. Test Overflow Statement:

IF ACCUMULATOR OVERFLOW =1,s2
where sl and s2 are statement numbers. This nonstandard statement
checks for €floating point exponent overflow on BRLIESC I and executes
statement sl next if it has occurred. Otherwise statement s2 is exe-
cuted next. (The very last operation may not be included in the check
on BRLESC I and this test turns the indicators off if they we -e on be-
fore.) BRLESC II always executes statement s2 next when this statement
is executed. BRLESC II halts as soon as overflow occurs, therefore this

statement is never executed after overflow has occurred.

FORTRAN IV does not usually allow this staiement or the IF
QUOTIENT OVERFLOW statement. Instead a subroutine OVERFL is predefined.

The general form of its use is

CALL OQVERFL(j)
where j is set to 1 if the overflow condition was on and j is set to
2 if it was off. The overflow condition is also turned off if it was

on,
17. Test Quotient Overflow Statement:

IF QUOTIENT OVERFLOW sl,s2
where sl and s2 are statement numbers. On BRLESC I/II, this nonstand-
ard statement does exactly the same as the IF ACCUMUIATOR OVERFLOW

statement explained above.

18. Test Division Statement:

IF DIVIDE CHECK sl,s2

where sl and s2 are statement numbers,

On BRLESC I, this nonstandard statement checks for floating
point division by zero (or unnormalized divisor) or fixed point division
overflow. If either has occurred in the program, statement sl is exe-
cuted next; otherwise s2 is executed next. (The very last operation in

the .revious statement may not be included in this test on BRLESC I and

37

T

this test turns the indicators off if they were on before.) BRLESC 1I

aliows this ctatement, but it halts whenever a divisor is zero.

FORTRAN IV does not usually allow this statement. Instead a

subroutine DVCHK is predefined. The general form of its use is

CALL DVCHK(j)
where j is set to 1 if either the BRLESC I floating or fixed point Ji-
vide overflow condition is on and j is set to 2 if both are off. Both
conditiens are turned off jif they were on. BRIESC II sets j to 2 and

continues execution.
IX., FORMAT STATEMENT
FOPMAT (Special Specifications)

This statement is not executed but is used to specify the field
lengths, spacing and the form of the data for either the reading of
input data or the printing (or punching) of output datu. It is always
used in conjunction with one of the input/output statements and does

nothing by itself.

let n

number of cimes to repeat this ffeld. (n is optional,

it is used as 1 if not specified.)

w = the width of the field (th> number of columns or charac-

ters).

d = the number of decimal places to the right of the decimal
point. Note that n, w, and d must be unsigned integer constants

greater “han zero. Then the types of fields that may be specified are:

niw for integer numbers.

nEw.d for real numbers with exponents.

nfw.d for real numbers without exponents.

wX for spacing or blank columns.

nAw for alphanumeric fields,

wH for alphanumeric (Hollerith) fields where the

characters are read into or printed from the w

38

characters following the H in the FORMAT statement
itself., BRLESC II also allows the use of ' * and §
characters to mark the beginning and end of hollerith

inform..'on.

nlw for logical variables.

nbw.d for double precision numbers with exponents.

nGw.d for generalized real numbers,

nOw for Octal numbers. (nonstandard)

nRw for right adjusted alphanumeric fields. (nonstand-
ard)

nZw for sexadecimal numbers on BRLESC II. (nonstandard)

Consecutive field specifications are separated by commas, thus
"FORMAT (I6,3E14.6,F10.7)" is an example cf a FORMAT statement., Each
complete FORMAT statement specifies the maximum length of the record
(card or printer line) that will be read, printed or punched when that

FORMAT statement is used.

Three levels of parentheses are allowed in standard FORTRAN and
four levels are allowed on BRLESC I/II so that groups of specifica-
tions may be repeated within a FORMAT statement. A left paienthesis
may be preceded by an integer n to indicate the number of times to re-
peat the specifications enclosed in parentheses. Thus FORMAT (E12.5,3
(16,F9.3)) would be a format where the I6,F9.3 portion would be re-

peated three times,

If the input/output statement list contains more items than speci-

fied by the format Leing used, them a new card or line is begun and

the format is repeated from the lieft parenthesis that is associated
with the next to last right parenthesis., (If there is only one pair

of parentheses, then the format is repeated from the beginning.) If
this parenthesis is preceded by a repeat number, it will be used. If
the format specifies more fields than required for an input/output
list, the rest of the format after the next fiald speciiication that

would have required a name from the list is ignored prcvided the end

39

A |

Ea oty

of the format is not reached first. Note that X and H field specifica-

tions do not require a name from the I/0 list.

A slash "/" may be used in a FORMAT statement to indicate that a
new card or line should be started. Thus FORMAT (I10/E15.6) used for
punching cards would cause a ten column integer to be on one card and a
fifteen column real number to be on the next card. As a general rule,
N consecutive slashes will cause N-1 blank lines or cards (or skip N-1
cards for input) except N slashes at the beginning or end of a format
caures (or ignores) N blank lines. A format consisting of only N
slashes will cause or skip N+l blank lines. An empty format will cause
or skip one blank line. Note that when one or more slashes are used
between field specifications, the normal separating comma is not re-

quired.

Scale factors may be used with ¥ type specifications (and in a
limited way with E type specifications). An integer, s, specifies the
power of ten (scale factor) to multiply the internal number by to ob-
tain the external number, i.e., input numbers get divided by 10° (not
on BRLESC I) and output numbers get multiplied by 10°. The integer s
is written in front of the nFw.d specifications and the letter P is
used to separate s and n, e.g., -2P4F10.5 or -2PF15,5 specify a scale
factor 10-2. Note that a minus sign is permitted to precede s but an
explicit + sign is not permitted. Once s has been specified, the scale
factor remains in effect for the rest of that FORMAT statement {in-
cluding repetitions) and will be used on subsequent E and F type fields,
A oP specification may be used to reset it to zero. For input, a
runched exponent causes the scale factor to have no effect. For E
fields on BRLESC I, only a positive scale factor may be used and it
does not change the value of the number; it only indicates that s
digits should be printed in front of the decimal point. (It has no
meaning for input E fields.) Thus the number 2 would normally print
0.20E 01 for s = 0, but for s = 1, it would print 2.00E 00 and for
s = 2, BRIESC I would print 20.00E-01, but BRLESC II would print

40

B

20.0E-01 which is the standard form., Thus for s > 1, BRLESC I prints a
total of‘s+d digits, but BRIESC II prints d+1 digits provided that

d = s-1. For a negative scale factor in E fields on BRLESC II, -s
leading zeros are printed as part of the d digits after the decimal

point which is as specified in the standard.

All output fields are right adjusted and are preceded with enough
blanks to f£ill the field. The sign, if any, immediately precedes the
numeric value. An all blank numeric input field will be converted to

zero.
1 Fields

Input: Most compilers assume the integer to be punched at the
4 right end of the field without a decimal point; however,
BRLESC I/II will accept it any place within the field and
it may have a decimal point. Any digits following a point
are ignored on BRLESC I/II.

Qutput: The integer will be punched at the right end of the field
with a floating sign. (All output has a floating sign
which means that the sign is in the column preceding the
leftmost digit that is printed.) Leading zeros are not
printed on I or F fields. If the integer is zero, a single
zero is printed at the right end of the field. If the
integer is too large for the field, BRLESC I prints an all
blank field and BRLESC II prints asterisks.

E Fields

Input: The number may or may not have an exponent. An E or a
sign, but not a blank, may be used to indicate the starting
of an exponent., The exponent may be less than four columms.
If a decimal point is punched, it is used and overrides the
d specification. 1If no decimal point is punched, then it
is assumed to be aftcr @ digits (colurms) left from the

start of the exponent. Most compilers require that the

41

"Qutput:

F Fields

Input:
Qutput:

number be punched at the right end of the field, but BRLESC
I/II allow it anywhere within the field. Blank columns are
used as zeros (except after the exponent on BRLESC I/II).
BRLESC II applies the scale factor only if the number does

not have an exponent.

The real number will be printed with a four column expon-
ent that includes an E, a sign, and two digits for the
value of the exponent. For exponents larger than 99,
BRLESC I will use five columns for the exponent, BRLESC II
will eliminate the E and print an explicit sign and a

three digit exponent. If s € 1, a decimal point is »rinted
d digits from the right end of the coefficient and if

s = 0, a zero is printed in front of the decimal point.

If s 2 1, then s digits of the coefficient are printed to
the left of the point and BRLESC I prints d digits after
the point but BRIESC II prints d-s+1 digits to the right

of the point. If s < 0, BRLESC II prints -s leading zeros
within the d fractional digits. Note that the scale factor
does not change the value of the number printed. The sign
immediately precedes the first digit printed. The entire
number is printed at the right end of the field of w

columns.

The same as E fields, see above.

The real number will be printed without an exponent and
the decimal point will be printed d digits from the right
end of the field. The actual number printed is 19° times
the number that is in the computer. If the number is too
large for the columms specified, BRLESC I/II will print
the number with an exponent or as much of the right por-

tion of such a number as is permitted by the field width

42

—

T

H Fields

Input:

Output:

' Fields

except BRLESC II will print asterisks if the width is less

than four columms.

The alphanumeric information is stored in the FORMAT
statement itself immediately following the H. No trans-
formation of characters is done; the sign option setting
for numeric input on BRLESC I/II has no effect on H
fields.

The w alphanumeric characters that immediately follow

the H are printed. Blanks are not ignored. All 64
characters are permitted except BRLESC II doves not permit
and \. However, other computers will probably not
print the same character as BRLESC I/II if the character
is not in the FORTRAN character set. For tape output, if
an H field occurs at the beginning of a line, the first
character is used by the printer for vertical spacing con-
trol instead of actually getting printed. The first
character is always printed when the PUNCH statement is
used on BRLESC I/II.

BRIESC II allows apostrophies to mark the beginning and
end of hollerith information in FORMAT statements, e.g.,
'ABC' is the same as 3HABC. An apostrophe can be in-
cluded within the string of characters by using two suc-
cessive apostrophies to represent each one apostrophe
that is to be included, e.g., 'X""' would print as X"

but note that this would read five characters from an in-
put line. Apostrophies in an input line are used just as
they appear and therefore they must appear in pairs. The
number of characters taken from an input line is determined
by the number of characters that appear between the be-
ginning and endirg apostrophies,

43

* and $ Fields

A Fields

Input:

Output:

X Fields

Input:

Qutput:

BRLESC II allows * and $ characters to mark the beginning
and end of hollerith information in FORMAT statements in
the same manner as the apostrophe, However the same
character must be used at both the beginning and the end
and that character cannot appear within the string of

characters.

BRLESC I/II stores a maximum of ten six-bit characters

per word using the rightmost 60 bits of a word. If

w < 10, w alphanumeric characters are stored in the vari-
able specified by the input list. If w < 10, the
characters will be at the left of the 60 bits with blanks
to £fill out the word. If w > 10, then w - 10 columns will
be ignored before storing the rightmost ten characters of
the field. As with H fields, no transformation of charac-
ters is done. This can be used to read FORMAT specifica-

tions into an array during execution.

This causes w alphanumeric characters to be printed from
the contents of the variable specified by the output list.
The rules listed above for A input are followed so that
whatever is read will be printed exactly the same. When
w > 10, w - 10 blank columns will be printed to the left

of the ten characters that are printed.

This causes w columns to be skipped whether they are

blank or not.

Causes w blank columns to be printed.

b

L Fields

Input:

Output:

D Fields

Inpuc &
Output:

G Fields

Output :

R Fields

Input &
Output:

If the first non-blank character is a T (or the digit 1 on
BRIESC I/I1), the logical value .TRUE. is stored; other-

wise ,FAILSE. is stored.

A T is printed in the rightmost column of the field if the
value of the logical variahle is .TRUE.; otherwise an F is

printed in the rightmost column of the field.

This is allowed for those computers that use double pre-
cision variables. On BRLESC I/II, it is used exactly the

same &8 an E field.

BRLESC I/II use G fields exactly the same as F fields.

This allows octal numbers to be read and stored at the
right end of BRLESC 1/II words in tl.e same manner as in-
tegers. On BRLESC I/II, if w > 22, the leading columms
will be uvsed and will cause more than 64 bits to be stored
if they are not blank and it is illegal to store more than

64 bits.

This allows integers (octal or decimal) to be printed in
octal form at the right end of the field with leading
zeros suppressed. If w > 22, w-22 blaak colums are

printed to the left of the 22 octal digits.

Only a few computers and BRLESC I/II allow R fields.
They are exactly like A fields excep:c when w < 10, the
characters are stored into (or printed from) the right

end of the computer word.

45

T

Z Fields (BRLESC II only)

Input: If w <17, store w sexadecimal characters in one BRLESC II
word. If w > 17, store the rightmost 17 sexadecimal

characters of the field and ignore the other characters.

Output: If w < 17, print the rightmost w sexadecimal characters.
If w > 17, print all seventeen sexadecimal characters from
one BRLESC II word in the rightmost 17 columns of the

field. Leading zeros are suppressed.

FORMAT statements may be placed anywhere within a program (or sub-
prograin) except as the last statement within a DO loop. (A few compu-
ters do not allow them immediately after a DO statement. On BRLESC I/II,
FORMAT statements are done as NOP instructions so it is best not to
place them where they will be done often.) FORMAT statements are kept
as alphanumeric information and decoded at run time, thus it is per-
missible to use A fields to read FORMAT statements (without the word
FORMAT) as hollerith input data during execution. The variable names
of such object time formats must be declared to be an array. The non-
subscripted array name may be used instead of a statement number for

the format identifier in a READ or WRITE statement.

If the list in an output statement is exhausted and the next item
in a format is an H fieid, the H field is printed. (If the end of the
format and list occur at the same time and an H field follows at the
rescan point, it will not be printed.) The scanning of the format ac-
tually precedes the scanning of the list except at the very end of the
format. Therefore slashes and X fields will also get used from a format
when they appear immediately to the right of the field specification
that corresponds to the last item on the list. The format scan only
stops vhen it.reaches a field descriptor that requires a list item and
the end of the list has been reached, or when both the end of the format
and the end of the list have bhern reached. Note that a format may con-

tain nothing but one or more H fields.

46

Blank characters in a FORMAT statement are ignored except within
H fields or similar holleritb infermation. The w count for an H field
must include the blanks within the H field.

On BRLESC I/II, the comma separating field specifications may be
omitted when it follows an H or X field specification or would precede
or follow a parenthesis or slash. The standard requires commas after H
and X field specifications and a right parenthesis except before and
after the final right parenthesis of the FORMAT statement. Commas are

not required wherever one or more slashes appcar.

Examples: FORMAT (315, (E15.8))
FORMAT (2HX=,F10.4,4 (1PE12.5))
FORMAT (6F10.4/4110//)

X. INPUT/OUTPUT LISTS

The names of the variables to be transmitted between the computer
and the input/output devices are specified in a list in the proper type
of input/output statement and the sequence of the names in the list de-
termines the sequence of transmission. Simple variable names, subscrip-
ted array names where the subscript control is either specified in other
statements or within the input/output list, and array names without sub-
scripts are allowed. Array names without subscripts cause the entire
array to be transmitted and the elements must (for input) or will (for
output) be arranged in the same sequence that they are in the computer
memory. Arrays are stored such that the subscripts vary from left to
right, thus two dimeasional arrays are stored by columns; i.e., A(1,1),
A(2,1), A(3,1) etc. is the sequence of elements of the array A. For
dummy argument arrays, the number of elements is determined by the dummy
argument array declaration rather than by the array declaration of the
actual argument although BRLESC I uses the actual argument declarator.

Commas are used to separate the names in an input/outout list.

47

L

Indexing informaticn specified within the list is written after
the names of variables to which it applies and the names and the in-
dexing information are all enclosed in parentheses. For example *
(B(1),I = 1,10) would cause the transmission of A, B{1l), B(2), ...,
B(10). Note that the indexing information is written the same as in a
DO statement with the increment tal 18 one if it is not wricten. It
is permissible to nest these parentheses, e.g., ((A(I,J),I = 1,5),

J =1,5). Note that commas are used to separate items in the list and
must be used after a right parenthesis except for the last one. The
indexing within each set of parentheses is done to completion before
going on to the next indexing specification. On BRLESC I/II, there is
they cannot be used in any subscript arithmetic expression in that list

that requires more than the addition or subtraction of a constant.

All of the input/output statements that transfer alphanumeric
{not binary) data make use of format specifications to specify the
field types and lengths. The type, e.g., integer or real, of a name
specified in an input/output list must correspond to the type of field
specified in the format that is being used. For example, all integer
variables must use I fields. (BRLESC I/II do allow integers to be
printed as integers in E or F fields.) The format controls the maxi-
mum length of each line. A line is shorter than specified in a format,
only when the end of the list is reached before the end of the format.
Whenever the end of the format is reached before the end of the 1iist,
the format is repeated from the left parenthesis that is associated
with the next to last right parenthesis and a new line (or card) is
started. (If there is only one pair of parentheses, then the format is
repeated from the beginning.) (See Section IX for more information

about FORMAT statements.)

Constants and arithmetic expressions are no- permitted in I/0
lists, except indexing information may contain constants and subscripts

may be constant or arithmetic expressions. BRLESC I/II allow hollerith

48

and positive decimal constants in I/0 lists, but this is nonstandard.

It is permissible to read an integer variable and use it as a sub-
script within the same input list. However, BRLESC I requires that the
integer variable name be separated from the place it is used by at
least two left parentheses. (This is counting the one used to indicate
a subscripted variable. Extra parentheses may be used just to meet this
requirement.) Thus J,(B(J)) is an example where the value of the varia-
ble J just read will be used as the subscript for B(J). (For BRLESC I,
the extra parentheses are not required if two or more variables or any
indexing information separates the integer from where it is used.)
BRLESC II does not require any extra parentheses and the above example

could be written J,B(J).

Examples: A, B, I
N, M, (BA(N)),P
(A(L,3), J =1,10), I =1,10), (R(K), K = 2,20,2)

XI, INPUT/OUTPUT STATEMENTS

The following group of statements may be used to control the flow
of information between the computer and input/output devices or second-
ary storage. Card reading or punching, magnetic tapes and, on some
computers but not on BRLESC I/II, discs may be used to read or write
data. Most of the statements also use a FORMAT statement, or its equiv-
alent stored in an array, to control the conversion of data between com-
puter form and printer or card form. However, the READ(t) and WRITE(t)
statements cause the transfer of data without any conversion. This com-
puter form of data will be referred to as binary information and ac-
tually is binary numbers for binary computers such as BRIESC I/II. The
other statements cause the reading or printing of data in alphanumeri-
cal form. There are three statements, END FILE, REWIND and BACKSPACE
that do not transfer data but can be used to manipulate the magnetic

tapes.

49

In all of the input/output statements described below:

f is a FORMAT statament number or array name.
list is any allowable input/output list (See Section X).
t is a magnetic tape integer constant or integer

variable. (See BRLESC I/II restrictions on t at
end of this section.)

1. Alphanumeric Read Statements:

READ(t,f) list
READ INPUT TAPE t, f, list (nonstandard form)

These statements cause decimal and alphanumeric input data to
be read from tape t, converted according to the format specification
identified by f, and stored in the variables specified by the list.
Each block of BRLESC I/II tape may be as long as 2000 characters and
each line may be as long as 160 characters. If the tape was previous
FORTRAN output that has a vertical space control character at the be-
ginning of each line, provision should be made in the format for skip-
ping that character. 1Ilowever on BRLESC I/II, the vertical space con-
trol character is ignored unless the format has an H field at the
beginning of the line. (If the tape was previous FORAST output, the

vertical space control character is automatically ignored.)

The tape reading is parity checked and there is checking for

end of reel.

If the "list" is omitted with this statement, it will cause
at least one line to be read and ignored. More than one line will be
ignored only if the format scan encounters a slash before it encounters

a specification that requires a list item.

Just INPUT may be used instead of READ INPUT TAPE on BRLESC
I/1I.

50

2. Alphanumeric Write Statements:

WRITE (t,f) list
WRITE OUTPUT TAPE t,f, list (nonstandard iorm)

These statements cause decimal and alphanumeric output data
to be written on tape t, after the variables specified by the list have
been converted according to the format specification identified by f.
Each line of data may not exceed a total of 132 characters. When a
line of output is printed, the first character is used to control the
vertical spacing of the paper and is not printed. BRLESC I/II insert
an extra blank to indicate singls: spacing whenever the first character
does not come from an H field {(or ' * or § field on BRLESC II). When
the first character does come from an H field on BRLESC I/II, that

character is used as a vertical space control character.

The tape writing is parity checked on BRLESC I/II and there
is checking for the end of a reel. The number of lines per reel on
BRLESC I/II will vary from about 70,000 to 200,000 as the length of

each line varies from 132 characters to 1 character.

Just OUTPUT may be used instead of WRITE OUTPUT TAPE cn BRLESC
I/11.

3. Binary Read Statements:

READ(t) list
READ TAPE t, list (nonstandard form)

These statements cause binary information to be read from
tape unit t and stored in the variables specified by the list. It
should be used only for reading data that was previously put on tape
by the use of the WRITE (t) statement described below. This statement
will not read more date than we~ specified in the list of the statement
that wrote ti.e data. (Such a group of data is defined to be a '"logical
record".) If less than the entire logical record is read, the tape will
move to the end of the record. (If the list is omitted entirely, the

tape still moves to the next logical record.) If an attempt is made to

51

read more data than is in one logical record, the unused portion of the
list will be ignored on BRLESC I/II, bat the standard does not allow
the list to be longe- than the record.

On BRIESC I/II, binary logical records are subdivided into
tape blocks of 127 words each plus one extra word for a total of 128
words. Within each logical record, the first word of each block is
zero except the first word of the last block contains the number of
words in the las- block (not counting the first word) and the total
number of block: .n the logical record. The FORAST output of the BT.WR
subroutine can be read by this FORTRAN statement.

4, Binary Write Statements:

WRITE(t) list
WRITE TAPE t, list (nonstandard form)

These statements cause all of the data specified in the list
to be written as binary information in one logical record on tape unit
t. It is useful for temporarily recording data on tape that may be
read back into the computer by using a READ (t) statement at a later
time. See the explanation of the READ (t) statement above for a de-
scription of the way the information is "blocked" on the tape on BRLESC
I/1I.

5. Write File Mark Statement:
END FILE t

This statement causes a file mark to be written orn tape t.
BRLESC I/II will ignore this statement when tape switch 8 has been
specified and will give a run error print when tape switch 6 has been

specified.
6. Move Backward Statement:
BACKSPACE t

This statement causes tape t to be moved backward one '"logi-

cal record". This is all of the data written by the WRITE (t) statement

52

that wrote the record for a binary tape, or is one line (or "cari1") ¥
it is an alphanumeric tape. BRLESC I/II will give a run error print .t

tape switch 6 or 8 has been specified.
7. Rewind Statement:
REWIND t

This statement causes tape t to be rewound without being un-
loaded. It may be executed on BRLESC I/II when the tape is already re-
wound, but should be avoided as it requires time. BRLESC I/II will

ignore this statement when tape switch 6 or 8 has been specified.
8. Read Cards Statement:

READ £, list

This nonstandard ctatement causes decimal and alphanumeric
data r. be re 1 from c: ds (or tape switch 6 on BRLF"C I/I. if the cards
have bee~ put on tape off-line and the proper console switch is up.)

If the list is omitted, at least one card will be read and ignored.
3. Punch Cards Statement:
PUNCH £, list

This nonstandard statement causes decimal and alphanumeric
data to be punched on cards (or actual tape switch 8 on BRLESC I/II if
the proper console switch is up). The BRLESC I/II tape output will be
"formatted" for the high speed printer by adding a 1 character at the
beginning of each '"card" and an end-of-line character at the end of
each "card". The block length will be at least 1830 characters. All
80 columns of a card may be used on BRLESC I/II and for tape switch 8

output, the "card" may be up to 132 columns long.
10. Print Statement:
PRINT f, list
For some computers, this nonstandard statement means to print

the data on an on-line printer. Since BRLESC I does not have an on-

53

line printer, the data is put on tepe switch 8 for off-line printing.
BRLESC II writes this data on tape switch 8 which, at the operators
discretion, may also be printed on an on-line printer, The maXximum

line length for BRLESC I/II and for most computers is 132 characters.

The following description generally applies only for BRLESC
I/II. If the first character of a line comes from an H field, it will
he used for vertical space control (after a transformation) and not
printed. If the first character does not come from an H field, an extra
"1" character (single space) is inserted at the beginning of the line.
The end-of-line character is automatically inserted at the end of each
line. The tape writing is parity checked and there is checking for end
of reel. The tape block length is at least 1830 characters and this
allows about 15 million characters or 185,000 lines of 80 characters

each on a reel of 1/2" tape.

For BRLESC I/II, a control card may be used to change all
PRINT statements to PUNCH statements.

Additional Notes on Input/Output Statements:

The £ (FORMAT number or name) may be omitted in READ, PUNCH or
PRINT statements on BRLESC I/II and this will cause FORMAT (1P6E12.5)

to be used automatically.

The statement numbers 1 and 2 may be used on BRLESC I/II to auto-
matically specify FORMAT (5F14.5) and FORMAT (1P5E14.5) respectively
without including them as part of the program. If 1 or 2 or both are
used to refer to these formats, then that statement number must not be
used in that subprogram for any other purpose. If either one is used
as a statement number in a subprogram, then the corresponding automatic

format cannot be used.

The omission of a '"list" on any of the input statements will cause
at least one record (card, line, or logical binary tape record) to be
read and ignored on BRLESC I/II. More than one alphanumeric record may

be skipped if the format contains slashes before the first specifica-

54

©

tion that requires a list element.
The number of print positions on ARDC printers is 132.

ADDITIONAL NOTES ON THE USAGE OF MAGNETIC TAPE ON BRLESC T1/Ii:

All of the tape reading and writing is parity checked. For one
inch tapes, rereading erroneously ten consecutive times or rewriting
wrong twice after each of five consecutive "GAP instructions'' causes
an error print and TRLESC I stops running the program. For half inch
tapes, the unit halts the computer after sixteen unsuccessful rereads

or rewrites.

There is checking for end-of-reel only on BRLESC I half inch
tapes. At the end of a reel, BRLESC I halts at 080 and is ready to
accept a new reel when restarted. A single reel of 1/2" tape will hold
about 185,000 lines.

The only restriction on swicching between reading and writing of
tapes is that no reading can be done beyond the block thav was last
written on a tape, i.e., after writing, a tape must be moved backward
before reading may occur. Whenever a tape on BRLESC I/II is switched
from writing to reading, a file mark and an extra one word block that
contains "EI'D TAPE" is automatically written on the tape before the
final file mark is written and then switching is done. (This extra
block is ignored by a BACKSPACE statement.) BRIESC II can start
writing after the use of the nonstandard subroutine BACKFILE. BRLESC
I allows the use of BACKFILE, but will not properly start writing im-
mediately after its execution. BRLESC I will also erase the file mark
if writing begins after execution of the nonstandard subroutine

SKIPFILE whereas BRLESC II will properly keep the file mark.

All FORTRAN alphanumeric input and output tapes are "buffered"
and may contain up to 2000 characters per block. To accomplish this
buffering, each tape unit used reguires the use of an extra 201 words

of BRLESC I/II memory. This space is assigned as it is needed while

55

the program is being executed and will not conflict with any other
memory assignment made in a normal FORTRAN program. Buffers are as-
signed backward from the subroutines provided space is-available there.
Otherwise they are assigned backward from the end of the memory. (For
"CHAIN jobs" on BRLESC I, they are assigned so as to not conflict with
any link of the CHAIN.)

FORTRAN programs are supposed to contain an END FILE statement and
a REWIND statement for each output tape used in the program and a RE-
WIND statement for each input tape. If this is net done within the pro-
gram, BRLESC I/II will rewind all tapes that were used but not rewound

by the program when the execution of the program has been completed.

Tape Unit Table.

The tape unit rumber t may be either a decimal integer constant or
integer variable. If t is a variable, the integer value it has at the
time the tape statement is executed is used as t. The following table
shows the correspondence between the value of t and the tape switch
number on BRLESC I/II. The actual physical tape handler used depends
on the switch setting.

t switch
0 9
1lor 1l 1
2 or 12 2
3 or 13 3
4 or 14 4
5 6 (Normal "card" input)
6 8 (Normal printer output)
7 10
8 11
9 12
10 7 (temporary or output only)
15 5

56

It is illegal to use both 1 and 11, or 2 and 12, or 3 and 13, or 4 and
14 within the same program. If t > 15 is used, it will be used modulo
16. PRINT (and PUNCH) tape output uses switch 8, the compiler itself
uses switch 14 or 15 for its own program and may use switch 7 for tempo-
rary storage while compiling, and card input that was put on tape off-
line uses switch 6. When leaving problems to be run on BRLESC I/II, the
switch number rather than the t number must be used in the instructions

to the computer operator.

Vertical Space Control.

All printer output is formatted for variable length lines for the
off-line high speed printer. PUNCH tape output automatically has a
single space character inserted at the beginning of each line and an
end-of-line character at the end of each line. The same is true of
PRINT and WRITE (t, f) output if the first field of the line is not an
H type field. 1If the first field is an H field, then the first charac-
ter of the field is used by the printer for vertical space control

after undergoing the following transformation:

H Field Tape

blank 1 (single space)

1 8 start new page

0 (zero) special blank line with 1 on next

line. (double space)

2 2 skip to even numbered line.
(nonstandard)

(possible double space)
8 8 (start new page) (nonstandard)

others 1 (single space) (nonstandard)

The vertical space control character is not printed and it causes the
spacing tc occur before the line is printed. A blank control character
should normally be used to obtain single spaced lines. Some computers

alilow a + for no spacing, but this will cause single spacing on BRLESC

57

I/I1. When reading previous FORTRAN alphanumeric output, a 1 vertical
space control character is transformed back to blank and the special
blank line is ignored but causes the 1 control character on the follow-
ing line to be transformed back to zero. The 8 vertical space control
character is not transformed back to 1, but note that the 8 will still
start a new page if It is used for output. The special Llank line is

also ignored by the BACKSPACE statement.

XII. DECODE AND ENCCDE STATEMENTS

ENCODE and DECODE are nonstandard statements that are allowed on
BRLESC I/II and a few other computers. These statements on BRLESC I/II
are generally compatible with CDC FORTRAN.

DECODE and ENCODE statements provide a means for performing I/0
conversions under format control without actually using an I/0 unit.
The DECODE corresponds to normal input conversion except that it as-
sumes the alphanumeric characters are already in the memory, either by
a previous READ statement or by some other means. The ENCODE statement
corresponds to normal output conversion except it stores the resulting
alphanumeric characters in the memory instead of writing them on some

output unit.
1. DECODE Statement:
DECODE (icr, f, ac) list

where icr is the integer number of characters per record, f is a FORMAT
statement number or an array name, ac is a variable name, array name,
or array element name that specifies the initial position of the alpha-
numeric characters that are to be converted according to the format £
and the converted results are stored in the storage specified by the

list. The list may be any normal I/O list.

BRLESC I/II assume that each memory word starting at ac, con-
tains ten characters. However, the number of characters used from each

word may be changed by execution of the SETCWD(i) subroutine where i is

58

an integer less than or equal to ten that specifies the number of charac-
ters per memory word that will be used when subsequent DECODE statements

are executed,

If the format and list require more than one record (line),
the next record begins at the next memory word after icr characters,
even if not all of the icr characters have been used. For example, if
icr is 23 and there are 10 characters per memory position, then the
second record would begin using characters from the beginning of the

fourth memory word.

BRLESC I/IT allow up to 160 characters to be decoded for each
record, even when icr is smaller. It uses blanks after the last memory
word that contains the icr characters. However, CDC does not allow

more than icr characters to be decoded per record.

Examples: DECODE (80,33,A)(B(i),I = 1,10)
DECODE (10,AF,E(3))X, J

2. ENCODE Statement:
ENCODE (icr, £, ac) list

where icr is the integer number of characters per record, f is a FORMAT
statement number or an array name, ac is a variable name, array name, or
array element name that specifies the initial position for storing the
alphanumeric characters that result from converting the items on the

list according to tiie format £. The list may be any normal I/0 list.

BRLESC I/II will store ten characters at each memory word
starting at ac and will always store at least icr characters. The num-
ber of characters stored per memory word may be changed by executing
the SETCWE (i) subroutine where i is an integer less than or equal to
ten that specifies the number of characters to be stored in each memory

word when subsequent ENCODE statements are executed.

59

If the format.and list specify less than icr characters in a
record, the record is filled out with blanks and a total of icr charac-
ters are stored. If the format and list specify more than one record,
the next record begins at the beginning >f the next memory word after

icr characters.

BRLESC I/II will encode up to 160 characters but only stores
icr characters at ac plus any characters that will fit into the last
memory word of the record. However, CDC does not allow encoding more

than icr characters per record.

BRLESC I/II do not automatically insert any extra printer
vertical space control character at the beginning of a record when EN-

CODE statements are executecu .

Examples: ENCODE (132,16,P(1))W, MT, K1, K2, F
ENCODE (50,241,H) Q, ((G(I,J),J = 1,2), I = 1,3)

XITII. DATA STATEMENT

The DATA statement allows initial values to be stored for variables
without writing an executable formula. The DATA statement allows a list
of variable names to be followed by a 1list of the constants that should
be initially stored as the values of the variables. A slash is used to
separate a list of variables and a list of counstants and commas are

used to separate items within both lists.
The general form of the DATA statement is
DATA v1,v2,v3,.../cl,c2,e3,.../,v4,v5,.../c4,e5,111/, ...

where vl,v2,... represents names of variables and cl,c2,... represents
constants. The variable list on BRLESC I/II may contain DO-implying
parentheses with variable subscripts that take on spec‘fied integer
constants, but the standard does not allow this. All other subscripts
must be constant, i.e., the integer value of all subscripts must be
completely defined within the DATA statement. The name of an array may

be used without subscripts to specify a list of the entire array on

60

BRLESC I/II, but this is nonstandard. Dummy argument names are not
#1llowed in DATA statements.

The constant list may contain any standard FORTRAN constant and
may also contain octal coanstants on BRLESC I/I1 by preceding the octal
digits with th: letter 0. T and TRUE are also allowed for .TRUF. and
F and FAISE are also allowed for .FALSE. on BRIESC I/II. Any constant
may be repeated k times by preceding it with "“k*" where k is the inte-

ger number of times that the constant should be repeated.

Most computers and the standard do not allow the DATA statement
to initisalize a variable that is in blank COMMON; however this is
allowed on BRLESC I/II. Also most other computers and the standard
allow variables in labeled COMMON blocks to appear in DATA statements
only within a special BLOCK DATA subprogram.

Some examples of DATA statements are:

DATA A,B/5.3,.6E-3/
DATA T,LOGIC,0CT/14.,FALSE.,07777/,ALPH/4HDONE/
DATA (C(I),I=1,10)/5%1.0,3%2.0,2*3.0/

Note the absence of a comma after '""DATA" Dbut the presence of a
comma before the beginning of any other list of variable names in the

same statement.

There must be a one-to-one correspondence between the number of
variables that are to be given initial values and the number of con-
stants within any one DATA statement., BRIESC I/II gives an error print

when there is not a one-to-one correspondence.

DATA statements may appear anywhere within a main program or sub-
program except the standard and BRLESC II require that they must not

appear before the last specification statement.

To allow some compatibility with CDC FORTRAN, BRLESC I/II also
allows the CDC form of the DATA statement which has the general form
of:

DATA(vl = cl),(v2 = c2),...

where vl ig one variable name or one array name or one subscripted
name, which may have DO-implying subscript information, and cl is one
constant or enough constants, separated by commas, to satisfy the re-
quirements for vl, Repetition of one or mecre constants k times is
allowed by "k(cl,c2,...)".

Some examples of CDC DATA statements are:

DATA (F=7.2), (X=.003)
DATA((B(J),J=1,5)=1.6,2(5.3,8.1)), (1A=,TRUE,)

XIV., SUBPROGRAM STATEMENTS

FORTRAN allows sections of a FORTRAN program to be designated as
subprograms that may be used at many different places in the main pro-
gram or in other subprograms. The SUBROUTINE, FUNCTION, RETURN, END,
and BLOCK DATA statements allow the programmer to define and name por-
tions of his program as subprograms and these statements provide
information that allows the compiler to provide for the substitution
of variables at execution time and to provide standard entry and exit
methods. Thevre are two kinds of executable subprograms, subroutines

c and functions. A BLOCK DATA subprogram is nonexecutable,

Any subprogram may use any of the FORTRAN statements within itself
except SUBROUTINE, FUNCTION, and BLOCK DATA statements. Any executable
subprogram may use any other subprogram or subroutine of any type, in-
cluding statement functions (See Section XV) that are defined at the

begimming of that subprogram. Recursive subprograms (subprograms that

use themselves) are not allowed.
1. SUBROUTINE Statement:
SUBROUTINE a(b,c,d,e,...)

This statement marks the beginning of a subprogram that is

called a subroutine. The name of the subroutine is a and b,c,d,e,...

62

are the names of nonsubscripted dummy arguments that will be replaced
at execute time by the actual variables that are listed in the CALL
statement that causes the subroutine to be executed. The subroutine
consists of the FORTRAN statements that follow this statement down to
an END statement. BRLESC I/IY wili also end a subprogram if it en-
counters a FUNCTION or another SUBROUTINE statement and do not require
the END statement.

The name of the subroutine does not indicate the type of any

result and hence any letter may be used as its first character.

Except for the common storage, all variables within a sub-
program are assigned storage that is unique and not used by any other
part of the program. Thus the variable X may be used in several
subprograms within a program and each X will be different unless it
appears in the same relative position in COMMON statements in each of

the subprograms.
Example: SUBROUTINE FOGO(A,XX, IEM2)

Dummy Arguments and Adjustable Dimensions:

No storage is assigned to dummy arguments; on BRLESC I/II,
DM will appear in the dictionary instead of a memory address. The type
of a dummy argument, as indicated by its first lerter or within a type-
statement, must agree with the type of all aciual arguments that re-

place it.

If a dummy argument is not an array, then &n associated actu-
al argument may be 2ither a simple variable or a subscripted array name
(which means that the subprogram will use just one element of an array
as though it were a simple variable). A nonarray dummy argument may
also be used within its subprogram as though it were a function name or
a subroutine name provided that any associated actual argument is a

function name or a subroutine name respectively,

63

If a dummy argument is an array, then any associated actual
argument must also be an array and may be subscripted except it may not
be subscripted on BRIESC I. The dummy and actual arguments must also
have the same number of dimensions on BRLESC I, but not on BRLESC II
or according to the standard. The dummy array need not be the same di-
measions as the actual argument, but when the dimensions are not the
saﬁe, the normal association of elements with idertical subscripts may
not occur, i.e. the actual element A(2,2) is probably not associated
with the dummy element D(2,2). Within the subprogram, the dummy array
declarator is used to reference the actual array and if any subscripts
other than the rightmost one are different between the dummy and actual
declarators, the same subscript does not reference the same array ele-
ment in both the cailing program and the subprogram. Therefore, agree-
ment of the declared dimensions between actual and dummy arrays is
usually desirable and often necessary for correct interpretation of the

program.

Array declarators in subprograms may use integer variable
names if they are dummy arguments and if the array is also a dummy argu-

ment. This feature is referred to as adjustable dimensions and it allows

the calling program to supply dimension information that allows proper
referencing of actual artays of different dimensions. The values of

the adjustable dimensions cannot be changed within the subprogram.

The standard does not allow dummy argument arrays to be de-
clared with more array elements than are in an associated actual argu-
ment and also does not allow referencing more array elements than
declared in the dummy argument array declarator. Therefore, if all ele-
ments >f the actual argument are to be referenced, the dummy and actual
argument array declarators must declare the same number of elements,
However very few computers actually enforce either of these standard

restrictions.

64

The following examples illustrate the associations between

elements of an actual argument array A and a dummy argument array D:

Array Declarators: A(2,2) and D(2,2)
Actual Argument : A or A(l,1l)

A(1,1) ~ D(1,1)
A(2,1) ~ D(2,1)
A(1,2) ~ D(1,2)
A(2,2) ~ D(2,2)

Array Declarators: A(3,2) and D(2,3)
Actual Argument : A or A(l,1)

" A(1,1) ~ B{(1,1)

A(2,1) D(2,1)

A(3,1) .. D(1,2)

A(1,2) .. D(2,2)

A(2,2) . D(1,3)

A{3,2) ~ D(2,3)
Array Declarators: A(2,3) and D(3)
Actual Argument : A(2,1)

A1) 1= DIl
A(3,1) ~ D(2)
A(1,2) ~ D(3)

2. FUNCTION Statement:
FUNCTION a(b,c,d,...)

This statement is similar to the SUBROUTINE statement but
should be used wheuever the subprogram has only one result. No dummy
argument 3hould be listed for the result as it is iutended that the
function will be used in an arithmetic (or logical) expression and the

result i3 simply used in evaluating the rest of the expression.

65

Tne name of the function is a and b,«,d,... represart non-
subscripted dummy arguments. The name of the function indicates the
type of the result by its first letter or the type of the result may
be declared before the word FUNCTION, e.g., RFAL FUNCTION, LOGICAL
FUNCTION, etc., and it may not appear in a type-statement cr any other
specification statement. The type 'of other dummy arguments can be
spécified in type-statements within the subprogram. On BRLESC I, the
name of the function must not end with F if it consists of more than

three characters and does not begin with I, J, K, L, M, or N.

Within the FUNCTION subprogram, some statement should store
a value in a variable that has the same name as the name of the function
and this will be used as the result.

There must always be at least one dummy argument for FUNC.'TON

subprograms.

Examples: FUNCTION LOW(Ql,T)
LOGICAL FUNCTION FOUND (L,V,N)

3. RETURN Statement:
RETURN

This statement may be used as often as desired within sub-
programs to indicate the point or points at which execution of the sub-
program should stop and control should return to the program that is
using the subprogram. It shculd always be used at least once in every

subprogram.
4. END Statement:
END

This statement should be used at the end of all subprograms
and at the end of the main program. It is not required on BRIESC I/II.
All program decks on BRLESC I/II do require the very last card of the

entire program deck to be a card that has an E in colum 1 or an * in

66

4 e IMGRERS od

column 1 with "DATA'" in the statement field.

For BRLESC I/II, the main program and all the subprograms
must be compiled at the same time und execution automatically begins
after comnilation if no errors have been detected during compilation.
ERLESC I has a limit of 60 subprograms used in any one program deck
and BRLESC II has a 1limit of 255 subprograms.

5., ENTRY Statement:
ENTRY a(b,c,d,e,...)

The purpose of this statement is to allow multiple entry
points within subprograms. It is not a standard FORTRAN statement,
but some form of it.is allowed in a number of FORTRAN IV compilers.
The foliowing description applies only to BRLESC I/II and is not com-
pletely compatible with any other computer.

The name of the entry point is a and b,c,d,e,... are the
numes of nonsubscripted dummy arguments, The name of the entry point
a is used in a CALL statement for ENTRY statements in subroutine sub-
programs and is used in arithmetic expressions for ENTRY statements in

function subprograms.

The dummy arguments in an ENTRY statement do not have to be
the same as those in the SUBROUTINE or FUNCTION statement for the sub-
program in which the ENTRY statement appears. However, a dummy argu-
ment may not appear in any statement (including DIMENSION) unless it
has previously been declared to be a dummy argument by appearing in a
SUBROUTINE, FUNCTION or ENTRY statement. The ENTRY statement must also
physically precede all of the appearances of any of the dummy arguments
that will actually be used in executable statements for that entry to
the subprogram. (This is the only essential difference between
7090/7094 and BRLESC I/TI ENTRY statements. 7090/7094 allow dummy ar-
guments to be used both before and after the ENTRY statement.)

67

The name of the result in a function subprogram cannot be an
entry name. Only the name appearing in the FUNCTION statement is allow-

ed as the name of the result.

ENTRY statements are nonexecutable and normal control may
pass through them without doing the initializing of the arguments for
that entry.

BRLESC I/II has a limit of 100 dummy 2rguments and entry

names in ENTRY statements within one subprogram.

CDC FORTRAN allows ENTRY statements without dummy arguments.
It uses the original dummy arguments automatically with each eatry.

Example: - ENTRY TRY2(V,R)
6. BLOCK DATA Statement:
BLOCK DATA

This statement is used to begin a specification subprogram
that allows the DATA statement to store constants into variables that
are in labeled common blocks. Thie subprogram must not contain any
executable statements. It must contain one or more COMMON statements
that list all of the names that are in any of the labeled COMMON blocks
that is to receive constants from a DATA - gtement. It is not permissi-
ble on most computers for any DATA statement to store into a blank
COMMON variable; however this nonstandard feature is allowed on BRLESC
I/1I.

The use of BLOCK DATA subprograms is not necessary on BRLESC
I/II but it should be used to maintain compatibility with other compu-
ters. BLOCKD will be used as the name of the BLOCK DATA subprogream in
a BRLESC I/II dictionary.

68

Example: BLOCK DATA
DIMENSION A(6)
LOGICAL 1A
COMMON/B1/R,A/B2/V,LA
DATA IA,A/.TRUE., 6%1.0/
END

XV, PREDEFINED FUNCTIONS AND STATEMENT FUNCTIONS

FORTRAN subroutines are separated into two classes, (1) functions
are those routines that have only one reosult and hence may te used in
arithmetical (or logical) expressions; ard (2) SUBROUTINE subprograms
(See Sgction X1V) or other subroutines that may have more thar one num-

ber as a result and may be used only by CALL statements.

There are three methods of defining a function. They are

1. Predefined functions that may be used simply by using the
predefined name,
2, Statement functions.

3. FUNCTION subprograms. (See Section XIV)

Predefined Functions

Appendix A lists the predefined functions that are allowed on
BRLESC I/II and most computers. Both the FORTRAN II and IV names are
listed for each function and either name is allowed on BRLESC I/II.

The standard name is the same as the FORTRAN IV name for those functions

that are predefined by the standard.

Additional function subprograms are available from the Systems

Programming Branch in the form of card decks.

69

b s e R

Naming Functions
For FORTRAN IV and standard FORTRAN, all function names indicate

the type of result in the same muauner as other variable names, i.e.,
either the initial letter determines the type or the type is declared

in a type-statement or FUNCTION statement. It is best to avoid using
function names that end with F when they have more than three charac-
ters. See the description of the FUNCTION statement (Section XIV) and
the description of statement functions in this section for BRLESC I/II
restrictions on the use of such names. These restrictions arise because
of the incompatible naming conventions between FORTRAN II and IV and the
desire to allow most FORTRAN II and IV programs to execute properly oa
BRLESC I/II.

For FORTRAN II, predefined function (and statement function) names
must always end with F (a total of seven characters are allowed) and
must begin with X only if the result is an integer. BRLESC II will also
use statement function names that begin with I-N as of type integer.
Variables must never be given a name that is the same as any of the
function or subroutine names eithey with or without the terminal F.

For BRLESC I/II, the terminal F is not necessary when the initial letter
of the predefined function name indicates the proper type of result but
is necessary in both the definition and use of arithmetic statement

functions whenever it appears either place.

Use of Functions

Any of the three types of functicns may be used in an arithmetic
expression by writing its name in front of a pair of parentheses that
enclose the list of arguments. The arguments must correspond in type,
order, and number to the dummy arguments used in defining the function.
Successive arguments are separated by commas and they may be arithmetic

expressions.

70

For BRIESC I/II, any function may also be used in a CALL statement
by adding one extra actual argument that specifies where to store the

result.

Statement Functions

Statement functions are functions that can be and are defined by
vne statement at the beginning of a main program or subprogram. The
name of the function followed by the dummy arguments enclosed in pa-
rentheses are written to the left of the = symbol. The expression that
describes the function in terms of the dummy arguments is written to the
right of the = symbol. The dummy arguments cannot be subscripted. Any
variable used in the expression that is not a dummy argument will be
identical to the variable of the same name in the main program or sub-
program in which the statement is contained. A statement function
definition normally can be used only in the program or subprogram in
which it is located, however BRLESC I allows them to be used anywhere

within the complete program.

A statement function may use any of the other types of functions

and may also use other previously defined statement functions. All

statement functions must precede the first statement that gets executed

in the program or subprogram.

If the statement function name does not indicate the proper type
of result, then its name must appear in a type-statement. When a state-
ment function name appears in a type-statement on BRLESC I, it must also
be put in an EXTERNAL statement that appears after the type-statement
and this pair of statements mist appear in every subprogram that uses
the statement function. On BRLESC I, the name of a function must not
end with F if it consists of more than three characters and does not
begin with I-N. On BRLESC I/II, statement function names that have more
than three characters, end with F, and begin with X will be used as
integer unless declared a different type in a type-statement. On

BRLESC I, statement function names that have more than three characters,

71

. LT L T TR PR L R Ty ——

end with F, and begin with I-N will be used as real unless declared a
different type in a type-statement.

The dummy argument names must indicate the same type of arithmetic
that is required when the function is actually used. When the initial
letter of a dumr. argument does not indicate the proper type, it may
appear in a type-statement before the statement function. When this is
done, the BRIESC I dictionary will not have the variable marked as a
dummy argument, but the program will be correct.

A statement function may be any kind of assignment statement, i.e.,

it may be arithmetic, logical or a nonstandard masking statement.
Example of defining an arithmetic statement function:
FUN(A,B,C) = A*%2 - SIN(B*CHC
Example of using this arithmetic statement function:

T = Q + FUN(X,S + EXP(V¥*2),14.)

XVI. PREDEFINED SUBROUTINES

A subroutine may be predefined and supplied by the compiler or it
may be defined by a subroutine subprogram. (See Section XIV.) Subrou-
tines may be given any valid name (no restrictions on the first or last

letter) and may only be used by a CALL statement.

There are no subroutines predefined by th~ standard. The follow-
ing subroutines are predefined in BRLESC I/II FORTRAN:

SETMSI (j) Set minus sign for input.

SETPSI (j) Set plus sign for input. (Not necessary,
anything not minus is plus.)

SETMSO (j) Set minus sign for output,

SETPSO (j) Set plus sign for output,

72

where j is an integer constant:

0 means blank.
1 meens y (12) punch.
2 means x (11) punch.

3 means x or y punch,

SEXAPR(a,b) Sexadecimal print from the address of a to the
address of b.

BINPUT Goes to binary input routine after saving a
return jump instruction (in 073 on BRLESC I and
007 on BRIESC II).

POWERS (a,b,c) Computes ¢ = a**b where b may be integer
or real,

SINCOS (a,b,c) Computes b = SIN(a) and ¢ = COS(a).

CHTAPE(u,t) Change FORTRAN I/0 unit u to use BRLESC I/II
tape switch t. (u and t must-be integers.)
This should only be executed before any I/0
has occurred on unit u.

MATMPY (a,b,c,i, j,k,im, jm,km)
Multiply matrices; c(i,k) = a(i,j) * b(j,k)
where im,jm,and km must be the declared maxi-
mum row dimensions of a,b, and ¢ respectively.

PLTCCA Plot routines for Calcomp plotter.

PLTCCB A separate ARDC Technical Note describes the

PLTCCD argument lists and provides detailed informa-

PLTCCE tion on using these plotting routines,

PLICCP

PLTCCS

PLICCT

FIXSCA

CONSCA

73

RDCLK(r)

Read clock into r (alphanumeric characters).

STCLKS(rl,r2,d) Subtract clock readings (r2-rl) and store

CVCLK(r,m)

CKCLK(t,s)
or
CKCLK(t)

UNPACK(a,b,n)

PACK(a,b,n)

SETREB

SETCWD(1)

SETCWE (i)

difference in minutes in d as a real number.
If rl is a blank esrgument, the start-time (of
compilation) is used. If r2 is a blank argu-
ment, the current time is used.

Convert clock reading r into minutes since
previous midnight and store in m as a real
number, If r is a blank argument, the current
clock reading is used.

If total (compile + execute) BRLESC I/II time
is greater than t real minutes, do statement

s next. (Statement rnumber s must have an S
after it.) When s is omitted, it is equivalent
to specifying a STOP statement.

Unpack n characters from ten characters per
word beginning at a to one right adjusted
character per word beginning at b. On BRLESC
I, a and b must have subscripts if they are
arrays., If n = 0, the subroutine does nothing.
Pack n characters from one right adjusted
character per word beginning at a into ten
characters per word beginning at b. On BRLESC
I, a and b must have subscripts if they are
arrays. If n = 0, the subroutine does nothing.
Sets I/0 routine to also allow a blank colurm
to start an exponent in input numbers,

Sets so the DECODE statements will decode i
characters per word. (integer i < 10)

Sets so the ENCODE statements will encode i
characters per word. (integer i < 10)

74

SKIPFILE (u,n)
or
SKIPFILE (u)

BACKFILE (u,n)
or
BACKFIIE (u)

FORTRAN

Moves FORTRAN tape u forward n file marks if it
is 1/2" tape. When n is omitted or if the tape
is 1", the tape moves forward only to the next
file mark. On BRIESC I, n = 0 is the same as

n =1, Only input tapes may be specified and
not tape switch 6 which is usually FORTRAN unit
5. The next READ (or WRITE) statement will be-
gin with the information after the file mark ex-
cept BRLESC I will erase the file mark if the
next statement is WRITE,

Moves FORTRAN tape u backward n file marks if
it is 1/2" tape. When n is omitted or if the
tape is 1", the tape moves backward only to the
next file mark. On BRLESC I, n = 0 is the same
as n = 1, Either input or output tapes can be
specified, but not BRLESC tape switches 6 or 8.
The next READ statement will begin with the in-
formation after the file mark, the next WRITE
will erase the file mark except BRLESC I erases
the previous block of information too. (Note:
BRLESC II properly does BACKFILE & SKIPFILE
including the situation when it has read 2
block ahead, BRIESC I does not properly start
writing immediately after doing BACKFILE or
SKIPFILE.)

BRLESC II only, Calls the FORTRAN compiler to
begin compilation of another program, which may
be either a FORTRAN or FORAST program. A PROB
card (PROB in cols. 7-10) must immediately pre-
cede the next program. This subroutine allows
two or more programs to be run consecutively,

but submitied as one program deck.

75

Additional predefined subroutines may be added in the future and ad-
ditional subroutines in the form of card decks are available from the

Systems Programming Branch.

XVII. FORTRAN PROGRAM CARDS

BRIESC I/II use the standard card format for punching FORTRAN pro-

grams.

Columns:
l1-5 Statement number (integer).
6 Centinuation Card if not zero or blank.
7-172 One FORTRAN statement. (BRLESC I/II allow more
than one.)
73 - 80 Identification,

The statement number must be a decimal integer. Leading zeros
and all blank columns are ignored. On BRIESC I/II, if a statement num-
ber is the same as the last nonblank statement number field, it is ig-

nored,

Column 1 is also used to indicate special types of cards. The
following list shows the special characters thaut indicate special cards:

Comment card. Columms 2-80 may be used for comments.
* BRLESC I/II control card.

B Boolean statement card. (FORTRAN II, not allowed on
BRLESC II)

D Double Precision statement card. (FORTRAN II, not
allowed on BRLESC II)

I Complex Arithmetic statement card. (Not allowed on
BRLESC I/II)

F Used to specify names of subroutines and functione used

as arguments. (FORTRAN II, not allowed on BRLESC II)
$ BRLESC I assembly order cards and BRIESC I/II MAXT and
MAXO control cards.

76

- BRIESC II assembly order cards. Ignored by BRIESC I.
7-3 End-file signzl on 7090/7094, control card signal on

1108, ignored on BRLESC I/II.

E BRLESC I/II, is last card of program deck.
BRLESC I will use FORTRAN statements from this card
and BRLESC II will ignore this card.

Y BRIESC I will ignore this card and BRLESC II will use
FORTRAN statements from this card.

/ Job control cards on 360 computers, ignored on BRLESC
I/1I.

All of these special column 1 indicators are nonstandard except the C

in column 1 for comment cards.

Column 6 is used to mark cards that are a continuation of the
previous card. It is used as a continuation if column 6 contains any
character other than zero or blank except on the initial BRLESC I/II
identification control card and all comment cards. BRLESC I/II does
not limit the number of continuation cards allowed for one statement

but the standard prescribes a limit of nineteen.

Columns 7-72 contains information, one or more statements, com-
coments, control information, etc, depending on the type of cards as
indicated by Columm 1, ZRLESC I/II will allow more than one statement
per card if the symbol $ is used to separate the statements. A special
program is available for compacting and repunching a FORTRAN program so
that it will have more than one statement per card and another program
is available for repunching the compacted version with one statement
per card,

Colums 73-80 are ignored and may contain any desired identifica-

tion, card number, etc.

Blank columns are ignored except when they are in hollerith infor-

mation in a FORMAT statement or within alphanumeric constants.

77

T ——

Blank cards will be ignored on BRLESC I/II, but the standard does

not permit "empty statements' which are usually caused by blank cards.
F Csrds (FORTRAN II, not BRLESC II)

If the name of a subroutine or function, either predefined or de-
fined by a subprogram, is used as an argumenrt for ancther subroutine or
function, its name, usualiy without the terminal F, must appear on a
card with an F in Column 1 or in a standard EXTERNAL statement. The F
card or EXTERNAL statement must be in the program or subprogram that
uses the subroutine or function as an argument and the F card may be

anywhere within that program or subprogram.

The names of the subroutines and functions are to start in or be-

yond Column 7 and are separated by commas.
Example: F SIN, EXP, FUN3, ATAN

On BRLIESC I, the terminal F is to be omitted from those function
names that have an initial letter that indicates the proper type of
result according to the I-N rules. It must be retained on those names
that do not indicate the proper type of result, e.g., LOGF, MAX(OF.

This same rule for the terminal F applies where the name is used as an
argument for a subprogram. When programming a subprogram to accept a
function name as an argument, the dummy argument should end with F only
if the initial character does not indicate the proper type of result.
If a final F is used with at least three other characters, then the re-

sult type is integer only if the name begins with X.

For FORTRAN IV and standard FCRTRAN, the EXTERNAL statement re-

places the F card and serves the same purpose.
B Cards (FORTRAN II, not BRLESC "7)

Cards with B in column 1 contain boolean statements where + means
the inclusive or operation, * means the and operation, and - means the

not operation. Integer constants are octal constants on these cards.

78

BRLESC I performs these boolean operations on the rightmecst b5 bits of

a word and sets the other 3 bits to zero.
D Cards (FORTRAN II, not BRLESC II)

Cards with D in column 1 indicate that the statements on such
cards are to be executed with double precision arithmetic. BRLESC I
allows such cards, but executes the statements in single precision
(about 16 decimal digits).

Statement Arrangement

On BRLESC I/II, all of the statements for the main program must
physically be before the subprograms. The subprograms may be in any
order, but no subprogram may contain any statements that are a part
of another subprogvam. BRLESC I allows a total of 60 subprograms,
BRLESC II allows 255 subprograms.

Within each main prugram or subprogram, there are a few restric-
tions on the physical arrangement of statements. The following diagram
shows that (1) FORMAT statements may appear essentially anywhere (2)
all specification statements must appear before all DATA statements,
statement function definition statements, and executable statements
(3) DATA statements may appear interspersed with statement functions
and executable statements (4) all statement function definitions must
appear before all executable statements (5) the first statement must be
a FUNCTION, SUBROUTINE, or BLOCK DATA statement if it is not a main pro-
gram and (6) the last statement must be an END statement. This arrange-

ment is standard and is necessary on BRLESC II.

79

FUNCTION, SUBROUTINE, or BLOCK DATA Statement

(if not a main prograu)

Specification Statements

| Statement Function

Definitions

FORMAT

STATEMENTS
DATA

Statements

Executable Statements

END Statement

Physical Arrangement of Statements

BRLIESC I has a further restriction that when the same name appears
in DIMENSION, COMMON and EQUIVALENCE statements, or in any two of these
statements, the statements involved must appear in the order o: DIMEN-
SION, COMMON, and then EQUIVALENCE within the specification statements.
Actually, BRIESC I does not require that all of the specification state-
ments appear before the statement functiuns and executable statements,
It does require thzt the first appearance of an array name be its array
declaration and any type-statement must appear before the names appear

in an arithmetic expression.

XVIII. BRLESC I/II CONTROL CARDS AND DICTIONaRY PRINTING

The use of certain control cards are allowed to affect the compi-
lation of FORTRAN programs. Most of these apply to BRIESC I/II only,
although some are also used on other computers. All of the BRLESC I/II

control cards are marked with an * in Column 1 with the control informa-

80

tion starting in or after Colum 7.

*

The first card of a program that has an * in Colum 1
is used as identification and is printea in front of the nor-
mal output. Columns 2-80 may be used. (On all other cards
with * in Column 1, only Columns 7-72 may be used.) The
first thing after the * ghould be the official problem num-
ber followed by a blank column or comma and this should not
extend beyond column 20. This card should also contain the
programuer's name, phone number, and building number.

we)

SETSSW 1 =~
DOWNJ'

This control card aliows sense switch i to be 'preset"
either UP or DOWN. By using this control card, the operator

can be relieved of actually setting the sense switches,
PRTOPU

This control card causes the compiler to translate all
following PRINT statements as though they were PUNCH state-
ments. (Allows card output instead of tape.) Note that
vertical space control chaiacters that are explicitly in a
FORMAT statement will be printed when PUNCH statement output
is listed.

RITORC

This control card causes the compiler to translate all
following READ INPUT TAFE, INPUT or READ(t,f) statements as
though they were READ statements. (Use card input instead of
tape.)

WITOPU

This control card causes the compiler to translate all
following WRITE OUTPUT TAPE, OUTPUT or WRITE(t,f) statements
as though they were PUNCH statements,

81

Ll g

WITOPR

This control card causes the compiler to translate all
following WRITE OUTPUT TAPE, QUTPUT or WRITE(t,f) statements
as though they were PRINT statements.

MVPRTO (sexa. add.)

This control card may be used {(usually before the first
executable statement) to move the program to the specified

sexadecimal address.
SUBR(sub. name = sexa. add.)

This control card allows any epecified predefined sub-
routine (or function) to be stored at the specified sexadeci-

mal address.

The above two control cards are needed when the space
allowed for storing predefined functions and subroutines is
exceeded as indicated by error print 73. This usually occurs
only when the plotting subroutine PLTCCB is used since it is
very large. In that case, the following two control cards
should be used before the first executable statement in the

main program:

* MVPRTO (01K00)
* SUBR(PLTCCB = 01400)

BIG CLEAR

This control card will cause BRLESC II to initialize
all uninitialized variables to a large number instead of the
normal zero, It mev appear essentially anywhere within a
program and uses the sexadecimal constant OLZ1LLLL to
initialize variables. Standard programs must not assume
that variables have a value of zero initially and this
control card assists in determining if all variables are

given values by the program before they are used to compute

82

other quantities. BRLESC I will ignore this control card.
/0 =0

This control card causes BRIESC Il to print an error
print each time a real division by zero is attempted. It
also causes the result of the division to be zero and allows
the program to continue running. It causes a subroutine to
be used to perform all real divisions and therefore increases
the length and execution time of the program. The form of
the error print is:

/0=0 Ar a b/d

where a i3 one more than the sexadecimal address at which
the division by zero occurred, b is the numerator and d is

the divisor which should be zero.
COMPILE TAPE TO

COMPILE TAPE THRU

SKIP TAPE THRU

See Section XXIII for explanation of these three con-

trol cards that are used when compiling from tape 12,
MEMORY i1,i2,i3

This control card permits a limited reassignment of
storage space within the BRIESC II compiler. It is ignored
on BRIESC I. It may allow a program to be run that previous-
ly caused compile error prints of number 19, 63, or 82. The
il, i2, and i3 are integer constants that normally have val-
ues of 3072, 4096 and 2048 respectively.

il Maximum number of names =llowed in the

dictionary.

83

i2 Maximum number of words in the second part of
the dictionary. One word is required for each
name plus at least 107% for other storage assign-

ments.

i3 Maximum number of words reserved for keeping in-
formation that was in DATA statements. One word
is required for each constant and about one word

for each name.
The following restrictions must be satisfied:
il + 12 < Memory Size - 25000

i3 < 3500

where "Memory Size" is 32768, 49152, 65536, or 81920 depending on the

amount of memory requested on the program cover card.

*

*

LIST
SYMBOL TABLE

Either of these causes the storage dictionary to be
printed. The asterisk in Column 1 is not required on the
LIST card.

The dictionary is printed with names of variables
arranged in alphabetical order within each subprogram.
Function and subroutine names will be preceded by two aster-
isks and will appear at the very beginning of the dictionary.
BRLESC II changes FORTRAN II predefined function names to
their FORTRAN IV and standard equivalent before inserting
them in the dictionary and inserts a blank character at the
beginning of the names of standard "intrinsic functions'.

On BRIESC I, main program names will be preceded only by two
blanks and subprogram names will be preceded by one character
and one asterisk or period. The character preceding each

subprogram name will be 1,2,...,9,A,B,...T corresponding to

84

the sequence in which the subprograms appears#d in the program
deck. The name of each subprogram will appear on a separate
line before the dictionary for that subprogram., If more than
30 subprograms are used on BRIESC I, some dictionaries for
two subprograms will be mixed together with both subprogram
names precading that section of the complete dictionary.

When this occurs, those names preceded with an asterisk are
from the subprogram whose name appears on the left side of

the subprogram name card and those names preceded with a peri-
od are from the subprogram whose name appears on the right.
BRLESC II prints the dictionary for every subprogram separate-
ly and does not precede each name with any special characters.
It prints the number of each subprogram on the line that con-
tains the name of the subprogram. The subprogram dictionaries
appear in the same physical order that the subprograms appear

in the program.

Following each name will be the sexadecimal memory
address that has been assigned to the name. Following this

address, any of the following letters may appear:

A indicates an array name,

indicates an integer variable.

indicates a logical variable.

indicates the name was in a COMMON statement.

indicates the name was in an EQUIVALENCE statement.

G = O 2 H

indicates the name was used only orce. (BRLESC II
precedes the U with the absolute card number on
which the symbol appeared, if it was not in a
specification statement,

indicates a name was in a REAL statement. (BRLESC II)
indicates a double precision variable. (BRLESC II)

' Appears after a statement number when that statement

begins in the right half of a word. (BRLESC II)

85

hr -

Statement numbers are printed at the right end of the
six character name position and therefore always precede the
names of the variables in any subprogram. The BRIESC I com-
piler usually adds a few names to the dictionary to indicate
temporary storage and special subroutines. The name $SUBS.
is printed usually at the end of the dictionary to indicate
the storage required by the predefined subroutines. The pre-
defined subroutines extend from this address down through
0103L and includes all of the input/output routines and sub-
routines. The $NOS. name is printed usually as the next to
lagt name in the dictionary and indicates the length of the
"constant pool". This storage, from 0SO (OFO on BRLESC II)
down to but not including the address printed after $NOS.,
is used to store the constants and the '"array words' (BRLESC
II does not use array words) required by the program. The
$LAST entry printed with the dictionary indicates the largest
address used by the program with the possible exception of

some tape buffers at the end of the memory.

For array names, the address printed in the dictionary

is the initial address of the array.

The names of all the common variables used within a
subprogram may not appear in the dictionary for that subpro-
gram. When the COMMON statements of a subprogram are pro-
cessed, a check is made to determine if the names and required
storage are the same as those for the main program. All of
the names up to the point of the first disagreement in name or
storage are deleted from the BRLESC I subprogram dictionary.
BRLESC II keeps all the names if there is any disagreement
and deletes all the names when they agree. If the subprogram
common Statements are identical to the main common statemerts,
then the words MAIN COMMON are printed preceding the subpro-

gram dictionary. 1f the first common name of the subprogram

86

disagrees with the first common name of the main program,
then the check and deletion explained above is made with the
common statements of the previouc subprogram.

If the subprogram common statements are identical to the
previous subprogram common statements, then the name of the
previous subprogram followed by "COMMON" is printed pre-
ceding the subprogram dictionary on BRLESC I ani BRLESC II
prints "PREVIOUS COMMON".

Names in blank common are assigned last, so thz last name in
the blank common assignment within the subprogram that has
the most total (blank and labeled) common storage will mark
the end of all the storage used by the program. The irstruc-
tions for the program and all the subprograms are stored
first, then all the variables not in common and not assigned
before the predefined subroutines are assigned storage im-
mediately after the instructions and this is followed by
those variables in labeled common, with the blank common

assigned last.
LIST8
LIST (S.CODE)

Either of these control cards causes the dictionary

and the sexadecimal code for the entire program to be printed.

Four instructions are printed on a line with the address of
the first one printed at the beginning of the line. The * in
Column 1 of LIST (S.CODE) may be omitted unless LIST is the

name of an array.
LIST (B.CODE)

On BRLESC I, this control card causes the antire pro-
gram and the subroutines it uses to be punched on binary
cards with absolute addresses. To use this binary deck to

run the program, it must be preceded by a binary input rou-

87

BT i i 5 D 1 ol

tine and followed by the standard set of FORTRAN input/output
routines and a jump to 073. The use of binary decks is not
recommended because BRLESC I can probably compile the FORTRAN
program from tape faster than reading the equivalent bina.y
cards. The * in column 1 may be omitted unless LIST is the
name of an array. On BRLESC II, this card is the same as the
LIST (S.CODE) control card.

LIST (START)

This control card may be inserted anywhere after the
identification card to cause the following source program
cards to be printed on the normal output unit. This card is
ignored if inserted before the identification card. It is
effective until a LIST (STOP) control card or the end of the
program is encountered. It does not cause a dictionary to
be printed. The * in column I may be omitted if LIST is not
an array name, Each LIST (START) card causes the following

statements to start printing at the beginning of a new page.

LIST (STOP)

This card causes the compiler to stop printing the
source program cards. It only has meaning when it has been
preceded with a LIST (START) control card. Note that pairs
cf LIST (START) and LIST (STOP) cards can be used to print
any selected portions of a program although it is no:t requir-
ed that they appear in pairs. This card does not cause a
dictionary to be printed. The * in column 1 may be omitted
if LIST is not an array name.

88

XIX. BRLESC I/II ASSEMBLY ORDERS

BRIESC I Assembly Language

BRLESC I allows BRLESC I assembly orders to be written on cards

that have a $ in colum 1.

The same general form as used in FORAST is

allowed, but not the special pror ssing of addresses, formulas, etc.

FORTRAN statements must not be put on the same card with assembly or-

ders, but more than one assembly order may be put in columns 7-72 by

separating them with a $ symbol.

The general form of each order is

like FORAST, i.e., OT(A)B)CS where "(" after ")" is optional, the last

")" and the last $§ are optional and lesc than three addresses is per-

mitted. Comments may follow $$.

For BRLESC I assembly orders:

Col. 1 $
Cols. 2-5 Blank, statement number or symbolic name is
allowed. Successive duplicaie numbers or

names are not allowed.

Col. 6 Normal FORTRAN continuation column. ($§ in

col. 1 not required on ~ontinuation cards.)
Cols, 7-72 One or more BRLESC I assembly orders.
Cols. 73-80 Identification only.

The following symbolic order types are the only ones allowed:

A B SET
S CB ST
M CEQ 1INC
D CNB II
c CNEQ LP

SQRT PMA J
SHX IT JS
TP HALT J+

e
TAPE
CARD
ZERO
S1J
I1J
EA
JA

JC

NOP
RSW
MMF
LPI
MMB
JNA
JNC

MI
M
RCL

See Appendix C for a brief description of these BRLESC I orders.

89

Any of the symbolic parameters X, F, A or +, V, and R may be
written after any arithmetic order type (i.e., A, S, M, D, C, SQRT, SH,
and PM) without punctuation and in any sequence. Note that SH must
always have an X parameter and PM must always have an A parameter., The
C order type may also be written C-, These parameters have the follow-
ing meanings:

X means fixed point fractional arithmetic.
F means floating pcint arithmetic.
A or + meaus to accumulate the resuit in C.
v means use absolute value of both operands.

R means wuse the "R register'.

A decimal parameter is also allowed. All arithmetic orders are

floating point unless the X parameter is used.

A GOTO statement with one address is allowed but none of the other
general FORAST statements are allowed.

No assembly order may have more than three addresses including
SET and INC and they cannot include a GOTO. However any of the orders
that set or increase index registers may be written with an = like
FORAST allows, e.g., SET(I=3)$. Index registers cannot be increased by

a negative amount.

A comma is used to indicate indexing in the same manner as FORAST.
Constant increments (and decrements on symbolic addresses) are allowed.
All index addresses must be absolute, decimal or sexadecimal, Address-
es 13-27(0J-01S) and 48-55(030-037) are not normally used in FORTRAN

compiled pregrams., Dummy arguments must never be indexed and variables

that might be assigned to a "large address' (addresses greater than
sexadecimal O3LLL) must not be indexed. Large addresses mayv be used
anywhere as long as they are not indexed. (BRLESC I allows large ad-
dressing by using indexing automatically on all large addresses.)

90

FORTRAN array subscripting is not allowed in any BRLESC I assem-
bly orders. When an arrey name is used by itself, it references the

"array word", not the first element of the array.

Decimal addresses are allowed and sexadecimal addresaes cumst have
a leading zero. Statemert numbers used for an address must either be
preceded by "S/'" or followed by an S. Decimal and hollerith constants
must be preceded by an * and may be either a FORTPRAN integer, floating
point, or hollerith constant. Fixed point fractions are not allowed.
Sexadecimal constanta may be written following a leading "/" and may
use M,A and Z, i.e., M = LLLLL, A = 00000, and Z represents enough

zeros to fill out a word of 17 sexadecimals,

There is no special processing of any addresses like there is in
FORAST for B of SH,JA,JNA,JC,JNC and y of I/0 orders. These addresses

should normally be written in sexadecimal,

Names of subroutines may be used as an address only by preceding
each one with "F/'" or including each one in an EXTERNAL statement or

on an "F card".

Decimal increments and decrements are allowed on symbolic address-
es and may be written either before or after the index name, e.g.,
At2 14 or A,14+2, SELF is also allowed to refer to an order's own ad-

dress.

Symbolic names may be assigned absolute addresses by using a SYN
statement on & $ card. SYN may be followed by any number of pairs of
parentheses that enclose one symbolic address and one absolute address

separated by '"=". An example is:
$ SYN(A=080)BT=542) (0LO0=Z1)$

Note that "("after")" is cptional and that § at the end indicates that
the rest of this card will not be used.

A group of sexadecimal or decimal constants may be stored by

using a SEXA or DEC statement on a $§ card. Any number of constants

91

may be put on one card but no other ;tatements or assembly orders are
allowed on the same card. Constants are separatec by parentheses with
n(" after ")" being optional. For sexadecimal constants, Z indicates
8 string of zeros, A a string of five sexadecimal zeros and M a string
of five sexadecimal L's. Any legal FORTRAN decimal constant may he
written on a DEC card.

Examples: §$ SEXA(L)08Z)*10KZ82)4A$
$ DEC(14)3.)6.1E-3)$

Up to 8ix alphanumeric (hollerith) constants may be stored by
using ALFN in columns 7-10 and § in column 1., Columns 11-20 are al-
weys stored as one constant, one additional word is stored for each
ten columns until one is blank (it is not stored) or until columns

61-70 have been stored.
Example: $ AIFN THIS IS ALPHABETIC INFO.

Comment lines with COMM in columns 7-10 and $ in column 1 are
allowed and should be sed to provide BRLESC I/II operators with infor-
mation about the program that is useful to them, e.g., informetion
about the tapes required.

Example: COMM TAPE INPUT ON UNIT 1, LABELED 4A7.
Some examples of BRLESC I assembly orders are:

AV(F)*7.1)T1$ SHX(Q,2)0286)0%

TAPE (SS2B)360)017 § SE1(15=0)3=1$
INC(2=2+1)21=21+4)$ CNEQ(W)/2A)425$
B12(R-1,4))TT$ TP10(12)/M)SELF+2$

JS (A)A+50) (F/SEXAPR)$ GOTO(TEST)$

029 (07000)S,24-1)II$ MMF (1,6)300)08000$

<> W o W i

92

F— Y

BRIESC II Assembly Language

BRIESC II allows BRLESC II assembly orders to appcar within
FORTRAN programs on cards that have a - (minus sign) in column one.
Each card that contains any assembly language must have the "-" in

column one and such cards must not contain any FORTRAN statements.

Each assembly order has an order type followed by one optional
address enclosed in parentheses and a $§ character indicates the end of
an order. Thus the general form is 'order type(address)$" where the
address and its enclosing parentheses may be omitted, the ")" after
the address may be omitted, and the $ may be omitted after the last
order on a cerd that is not continued on the next card. Comments may

appear after "$$".
For BRLESC II assembly order cards:

Col. 1 - (Minus sign)

Cols. 2-5 Blank, statement number or symbolic name that
Legins with a letter,.

Col, 6 Normal FORTRAN continuation columm.

(- in col. 1 not required on continuation cards.)

Cols., 7-72 One or more assembly orders.
Cols. 73-80 Identification only.

Location Field (Cols, 2-5):

BRLESC II allows 2, 3 or 4 orders per word and allows jumps
to either the left half of a word or the right half. When a statement
number avpears in columms 2-5, the first order on that card will start
at either the left half or the right half of a word. When a symbolic
name appears in cols. 2-5, the first order on that card will start at
the left half of a word except when the name begins with R; then the
first otaer will start at the right half of a word. A symbolic name
used as a location of assembly orders must not have previously Leen

assigned memory space. Therefore, the location must be its firet

S3

S T

appearance or else it must have appeared in some specification state-

ment or appeared only as a primary address in assembly orders.

Successive duplicate names or statement numbers are allowed,

only the first one is used.
Symbolic Order Types:

Appendix D lists the acceptable symbolic order types and a
brief explanation of each order. Note that the jump orders that con-
tain a '(prime) character will always jump to the right half of a word.
The other jump orders jump to the left half of a word, but the compiler
changes them to the prime orders if the specified symbolic address has
been asgigned to an order that begins at the right half. Therefore
the jumps without the primes should normally be used., All absolute
(dec. or sexa.) addresses are assumed to be locations of left orders
when used as addresses in jum; orders without primes. Sexadecimal or-

der types are also allowed, e.g. ON4.
Addresses:

An assembly order address may consist of three parts; a
primary address, an index address, and a decimal increment that may be

positive or negative.

The assembly order primary address may be any of the follow-
ing types:

(1) Symbolic. Begins with a letter.

(2) Statement number. Must have a trailing S; e.g.,
13s.

(3) Sexadecimal. Regins with zero.

(4) Decimal. All decimal digits.

(5) Decimal Constant. 7Preceded with "*" may be
integer, real or hollerith (H, R or prime). May
have a sign.

(6) Sexadecimal Constant. Preceded with "/"; A, M and

Z characters may be used.

94

(7) Subroutine or Function Name. Must be preceded
with "F/".

All addresses except constants (types 5 and 6 above) can be
indexed by writing a comma after the address followed by an index ad-
dress. The index address must be symbolic, sexadecimal, or decimal,
The effective address is strictly a sum of the address assigned to the
primary address and the contents of the index address plus any incre-
ment. Thus if A is an array; A, I addresses A(l) when I=0 and A(2)
when I=1, etc. Note that only '"one dimensional" indexing is allowed
and normal FORTRAN subscripting is not allowed although the name of an

array can be used as the address of the first element of that array.

If the primary address is not the name of a dummy argument,
a decimal increment can be used in addition to indexing. The decimal
increment may be written either before or after the index address.
Some examples of addresses with increments are: (B + 2) (B - &)
Q +17,J) (TV4, K3+ 6) (, N+ 2) (-1). Dummy arguments may be index-
ed but cannot have an increment. An increment can appear beyond a

comma only if it follows an index address.

I0S Address:

The primary address of the I0S order gets special processing
to allow symbolic specification of various I/0 operations. The table
below lists all of the special symbolic names that can be written.

More than one can be written if they are separated by minus signs. Nor-
mal indexing is allowed but an increment is allowed after an index
address only. The address may be specified completely as one sexadeci-

mal address. It may be one decimal address only if it is less than 256,
Special I0S address symbols:
1., Unit Selection:

TAPE (optional)
CARD
DISC or DISK

95

A

PRINT
PUNCH
Decimal integer to select tape unit.

2. Read and Write Selection:

R (optional) 60 or 64 bits per word.
W 60 or 64 bits per word.
R72 72 bits per word.
W72 72 bits per word.

3. Special Tape Operations:

MF Move forward by blocks.

MB Move backward by blocks.
MFMF Move forward by file marks.
MFMB Move backward by file marks.
‘WFM Write file mark.

REW Rewind.

UNLOAD Rewind and unload.

4. Character Size Selection:

C6 (optiomal) Six bit characters.
Cc8 Eight bit characters.

5. Parity Selection:

OP (optional) 0dd parity.
EP Even parity.
IP Ignore parity.

Each symbol marked "optional" is used if no conflicting sym-
bol is specified, e.g. tape is the type of unit selected if CARD or
DISC, etc. is not specified. The above symbols may appear in any se-
quence within the primary address. ‘

96

SN

Care must be exercised in manipulating a tape with assembly
orders if the same tape is used in FORTRAN statements. If possible,
normal FORTRAN statements should be used. In particular, the FORTRAN
formatted tape input routine reads the next block on a tape as soon as
the last line of the previous block has been read by the FORTRAN pro-
gram. If this has just happened on FORTRAN tape i, then the 4 tag bit
(bit 67) of OFNO,i is a one, otherwise it is zero. Examples of IOS or-

ders:

10S (TAPE-MB-4)
10S (DISK-W)

10S (WFM-3)

105 (R72-C8-7-EP)
I0S (RFW,NTAPE +1)
105 (02409)

Address assigning and order length:

The BRLESC II FORTRAN compiler assigns nonarray variables to
short memory addresses at their first appearance in an executable state-
ment if they did not appear in a specification statement. However, the
appearance of a name as a primary address in an assembly order doas not
cause its assignment to a short address. All unassigned primary ad-
dresses will cause long (half word) orders to'be generated, However the
appearance of an unassigned name as an index address will cause its
assignment to a short address (if one is available). The length of each
order is determined when it is first encountered and it is made short
when nossible. Unusable portions of words are filled in with OFF or-
ders (nonindexable no operation orders). Care must be exercised when
making any assumptions about either the length of an order or its po-
sition within a word. 1In particular, blank addresses that are to be
extracted into with E or E' orders should be written as 0100 to insure

the use of a half word order.

97

MAXO and MAXT cards:

Normal MAXO and MAXT cards have a $ in column one so that the
same card will work in either FORAST or FORTRAN on both BRLESC I and II.
Howéver BRLESC II FORTRAN will accept such cards with - (minus sign) in
column one while BRLESC I will ignore all cards with a uinus sign in
column one. Thus it is possible to specify different maximum times for
the two computers by inserting the - MAXT card before the $ MAXT card
since each machine will actually use only the first MAXT specified.
Each machine uses the last MAXO card, so the - MAXO should be after the
$ MAXO if different line limits are desired. BRLESC II does not allow
any other assembly orders on the same card with MAXO or MAXT.

SYN cards:

Symbolic names may be assigned absolute addresses by using a
SYN statement on a card with the minus sign in column one. SYN may be
followed by any number of pairs cf parentheses that enclose one symbol-
ic address and one absolute address separated by an "='" symbol. The
"(" after ")" and the final ")" are optional. A $ character marks the
end of the SYN statement and the rest of the card cannot be used for

anything except comments.
Example:
- SYN (T = 06) 4 = W) TA = =/NO)$
SEXA and DEC cards:

A group of sexadecimal or decimal constants may be conse.u-
tively stored by using a SEXA or DEC statement on a card with the minus
sign ir column one. The first constant will be stored at the location
specified in columns 2-5 of the card and the others will follow consecu-
tively. Constants must be separated by parentheses with " (" after ")"
and the last ')" being optional. No assembly orders or any other state-
ment can appear on the same card. Comments may follow a $ a. the end of

the constants.

98

In sexad cimal constants, A indicates five sexadecimal zeros,
M indicates five sexadecimal L's, and one Z indicates enough zeros to
fill out a word of 17 sexadecimals., Constants of less than 17 charac-

ters and no Z are right adjusted, i.e., (4) is the same as (Z4).

Any legal FORTRAN decimal constant may appear on a DEC card.

The constants may have signs.
Examples:

~SE SEXA (Kz8) (LNAM)N4Z)28$
-V DEC (19)14.26)-6.9E-4) + 18)$

ALFN cards:

One to six alphanumeric (hollerith) constants may be stored
consecucively by using an ALFN statement on a card that has a minus
sign in column one. "ALFN" must appear in columns 7-10 and columns
11-20 are always stored as one alphanumeric counstant. Each following
group of ten columns (21-30, 31-40, etc,) is stored until one is all
blank or untii cols, 61-70 have been stored. Such cards cannot be con-

tinued on the next zard by using columm 6.
Example:
- ALFN ABCDEFGHIJKLM
Examples of BRLESC II Assembly Order Cards:

-12 F+(A)$ F(+)(B,J)$ FM(T)$ U(114S)$

-162 L+ (IW)$ ANDN(/LZ)$ CZ(147S)$ $ COMMENT

-NEW 1{#)M(J3)$ L+(*1)$ IORM(V,J-1)$

-RAN LR(0100)$ + (V3)$ LSD(24)$ IM(T4)$

- F+(AB)$ FXA(*-5.213E2)$ F/ (TM,K1)$ FM(018,X)$ U(JOB1)

99

XX. MAXIMUM TIME AND OUTPUT SPECIFICATIONS

BRLESC I/II allow the programmer to control the maximum amount of
time a program will be allowed to run and the maximum amount of output
it will be allowed to print. If the programmer does not specify these
maximums, BRLESC I/II will set them at five minutes and 1200 lines.
Whénever either one of the specified maximums is exceeded, BRLESC I/II

will stop execution of the program after the appropriate error print.
Maximum Time
The maximum time specification is of the form:
$ MAXT (integer number)MINS.

where the initial § is in column 1 and the rest of the specification is
in columms 7-72. '"MINS.'" may be replaced with "HRS." or "SECS." to
specify hours or seconds instead of minutes., Note that fractions of

time units are not allowed.

The time begins when this card is encountered by the compiler and
hence some compilation time must be included when estimating the maxi-

mum time.

If the statement number 98765 has been used in the main program,
BRLESC I jumps to that statement when the maximum time has been ex-
ceeded. 1If 98765 has not been used as a statement number, BRLESC I
gives the following error print:

EXCEEDED MAXT., Il= s OCTAL AR,REFS.= 2 b ¢ CIK= cr

where s is the octal contents of index register 1, which is usually
the address at which the last subroutine, function, or I/0 routine
was referenced; a,b, aud ¢ are the octal contents of indexes 10,11 and
12 respectively which are the last array addresses referenced, and cr
is the clock reading at the time of the error print. This clock read-
ing contains six digits, two each for hours, minutes and hundredths of
minutes. This same error print is obtained if BRLESC I stops for some

reason during execution of a FORTRAN program and the clock reading can

100

be compared with the initial time to determine how long the program ran
before it stopped.

On BRLESC II, the following error message is always printed when

the maximum time is exceeded.
EXCEEDED MAX. TIME OR HUNG UP. NI = ni BJ = pj PBJ = ppj

where ni, pj, and ppj are sexadecimal addresses. The ni address is one
(sometimes two) more than the address of where the computer stopped or
was interrupted, pj is one more than the location of the previous jump
instruction and gpj is one more than the address of the jump instruc-
tion that was executed before the previous one. This error message
line is followed by a line of four consecutive words located at ni - 3
with that address printed at the beginning of the line. If statement
number 98765 was used in the main program, BRLESC II jumps to that

statement after printing this error message.
Examples:

$ MAXT (3)MINS .
$ MAXT (90)SECS .
$ MAXT (2)HRS .

Maximum Qutput

The maximum output specification is of the form:
$ MAXO(integer number)LINES

where the initial $ is in column 1 and the rest of the specification is
in columns 7-72. Blank lines caused by slashes in formats count as

lines; however any lines skipped by using vertical space control charac-
ters do not count. All tape or card alphanumeric output is included in

the counting of lines but binary tape output itc not included.

Note that MAXO ends with the letter 0, not zero.

101

When the specified amount of output has been exceeded, BRLESC I/IX
will not go to statement number 98765.

BRIESC I gives an error print of:
EXCEEDED MAXO AT s OCTAL AR.REFS. = a b ¢ CIK = cr

where s is the octal address of the statement that caused the output
maximum to be exceeded; a,b and ¢ are octal addresses of the last array
elements referenced and cr is the clock reading at the time of this

error print.
BRLESC II prints the following error message:
EXCEEDED MAXO AT e

where e'is a sexadecimal address that is the location of the last entry
to the I/0 routine.

Exaniples:

$ MAX0(500) LINES
$ MAX0(20000) LINES

It is permissible for MAXO and MAXT specifications to be on the
same card with each other or with BRLESC I assembly orders. ERLESC II
also allows MAXO and MAXT cards with a minus sign in column 1, but does

not allow any assembly orders on the same card.

XXI, STATEMENT NUMBER 98765 AND 9876¢

The statement number 98765 may be used in a main program on BRLESC °
I/II to obtain some extra printing after a program fails to run to com-
pletion or exceeds the maximum time. When an unexpected machine halt
occurs, the operator manually causes BRLESC I/II to go to statement
98765 if this statement number was used in the main program. At 98765,
the program should do a limited amount of printing that could be help-
ful in determining where and why the program stopped and then should
execute a STOP ststement.

102

Each link of a CHAIN job on BRLESC I may have its own 98765 state-

ment .

The statement number 987€6 may be used in a main program on BRLESC
I/II to indicate a statement at which execution should be contiaued
after a '"run error" print has occurred. Such error prints are listed
in Section XXVI. They are errors detected by predefined functions, sub-
routines, and the I/0 routine, If 98766 is not used in a main program,

execution is terminated after a run error print.

Only the last physical link of a CHAIN job on BRLESC I may use

98766 to continue oxecution after a run error print,

XXII. CHAIN JOBS

BRLESC I allows segmentation of large programs by using CHAIN con-
trol cards and a CHAIN subroutine. BRLESC I is essentially compatible
with 709/7090 FORTRAN in the way this is done. Each "link" of the chain

must be preceded by a control card of
* CHAIN(R,T)

where R is an identifying integer number (less than 32768 on 709/7090)
and T is a tape unit designation of any two alphanumeric characters
(must be B2,B3,A4 or Bl on 709/7090). BRLESC I always uses tape Switch
7 for storing links. Each link consists of a complete FORTRAN program
with a main program followed by all of its subprograms. The initial
control card should follow the identification card but may precede it.
No other control cards are required between links. Only the last link .
may end with the * DATA card or an E in columm 1.

Any link may begin execution of any other link by executing a CALL
CHAIN(R,T) statement where R and T both are used to identify the link

that is to be executed next.

Data may be passed from one link to the next one through common
storage only. No program should assume any other storage is preserved

from one link to the nmext. All links that require correspondence of

103

T T e T T e T

greSTET—

blank common storage on BRLESC I must have the same total amount of
labeled common storage. (BRLESC I assigns blank common storage after
all of the labeled common storage has been assigned in the order the
labels appeared in COMMON statements.) All links that require corres-
pondence between labeled common blocks must have the label in the same
relative position in COMMON statements and the same total length of
common storage preceding it. During execution, when one link calls the
next link, BRLESC I passes the maximum amount of common storage that was
assigned by any link that has previously bYeen executed. 1n summary,
blank common need not be the same length in each link, but each labeled
common block does usually have to be the same length.

There is a chance of incompatibility between BRLESC I and other
computers if links that have short programs with long common storage
are mixed with links that have long programs with short common storage.
When this incompatibility arises, an error print of CH.COM.BIF occurs.

Sense switches that are preset with BRLESC I control cards will re-
main preset in all following links unless the link contains a new preset
card. Other control cards will not affect following links except a LIST
card will cause dictionary printiig in all following links.

DATA statem=nts may not be used in chain jobs on BRLIESC I.

XXIII. COMPILING FROM TAPE 12

The BRLESC I/II compilers allow part of a program to be on tape
and psrt of it to be on cards. The card portion may contain changes,
deletions and additions to the portion on tape. The card deck also con-
tains control cards that specify when the compiler should switch between
compiling from cards and compiling from tape 12,

All of the changes, deletions and additions are accomplished by
switching between the card deck and the tape and by skipping lines on
the tape.

104

Three control cards may be used in the card deck to centrol the
compilation from tape 12, (fhis is tape switchh 12 which is the same as
FORTRAN unit 9.) The control cards are:

Cols, 73-80
* COMPILE TAPE TO ident.

This control card causes the compiler to begin compiling from tape
12 and to continue compiling from tape 12 until a line is read that has
columns 73-80 identical to columms 73-80 on this control card. This
line on tape is not compiled and will not be used when the car¢ deck has
another control card that causes compiling from tape to be resumed, i.e.,
the line is automatically skipped.

Cols. 73-80
* COMPILE TAPE THRU ident.

This control card causes the compiler to begin compiling from tape:
12 and to continue compiling from tape 12 until a line has been compiled
that has columns 73-80 identical to columns 73-80 on this control card.
If the same program resumes compilation from tape 12, the very next line
will be used and no lines are automatically skipped.

Cols, 73-80
* SKIP TAPE THRU ident.

This control card causes lines to be skipped on tape 1Z until a
line has been skipped that has columns 73-80 identical to columms 73-80
on this control card. After these lines have been skipped, compilation
rasumes with the card deck and one of the above control cards must be

used if compilation from tape 12 is desired.

It is permissible to use successive skips; the skipping does not
stop for any reason other than identity of columns 73-80 and reading the

special END TAPE block at the end of the information on a tape.

105

- TP RN LR

These three control cards are ignored if they are on tape 12 and

should not be put on the tape.

Note that all of the control depends only upon the identification
columns of a line. Thus, statements have no special significance and
a line include all the statements or maybe iust a part of a statement
that is on that line. For example, a statement begun on tape could be
continued on cards; however a statement on cards cannot be continued on
tape because the control card that switches to tape 12 compilation will
stop the continuation sequence. Note also that the card deck does not
actually rewrite any lines on the tape, it only causes the compiler to

use cards instead of tape or to skip lines on the tape.

Data may also be included on the program tape; however, it cannot
be changed by contrcl cards before it is read, The program can read it
by referring to unit 9 in READ statements. If data is to be read, the
last program line on the tape must have been compiled or skipped. Tape
12 is rewound at the end of execution of any program that reads data

from it, It is not rewound if it is used only for compilation.

BRLESC I/II will accept tapes that do not have any extra control
characters on them, i.e,, a simple recording of 80 characters per line
with not more than 2000 characters per block. (The block length can
vary on the same tape.) BRLESC II will also accept the normal output
of a FORAST program but not the output of a FORTRAN program.

XXIV, A PROGRAM TO WRITE PROGRAMS ON TAPE 12

A special program is available for writing FORTRAN programs on a
tape :(switch 12) so that they can be compiled from tape bty BRLESC I/II.
This program accepts one or more FORTRAN programs, including data if de-
sired, as input on cards and writes them on tape with a new card number

sequence and identification in Columns 73-80.

106

There are two special control cards that are to be used; one to
mark the end of a program and one to mark the end of all the programs.
They must be punched with the initial E in colum 1 and no blanks other

than one blank after END. These two cards are:

END PROGRAM This card is to be inserted at the end of
each complete program deck except it is
not required when the END TAPE card is
used. It goes after the data when data
is included. It causes a file mark to

be written on tape 12,

END TAPE This card is to be inserted at the end of
the last program deck that is to be put
on tape 12, It goes after data when data
is included. It causes the normal end-
tape file mark and block to be written
and tape 12 to be rewound. If columns
11-16 contain "C,PROB", the computer will
immediately begin to compile the next
problem which could be a card deck that
causes compilation of a program that was

just written on tape 12,

This program puts new identification in columns 73-80 of each pro-
grar line. This consists of 1-6 characters, usually the name of the
subprogram followed by an absolute line count that starts at one at the
beginning of each subprogram. One or more characters are removed from
the end of the name of the subprogram whenever those columns are needed

for the line count.

The name of the main program will be "MAIN" if columms 73-78 of
the first card are blank. If columms 73-78 of the first card are not
blank, they will be used as the name of the main program. The state-
ments are scanned from the beginning of each line so as to obtain the

name of a function or subroutine when such a statement is the first

107

statement on a line., The FUNCTION statement may have a type declaration

in front of it.

If data is included, the normal * DATA card (or E in col. 1)
should be included between the program cards and the data cards. All

80 columns of data cards are copied onto the tape.

If you wish to keep the identification columns as they are on the
cards, an * DATA card can be placed in front of the program and then
all 80 columms of the program cards will be copied onto the tape. How-
ever, that * DATA card must be skipped when compiling the program
from the tape and if data appears after the prograw., an * DATA card

must precede the data and must have "DATA" in columas 7-10.

This program is written in FORAST and runs only on BRLESC II. This
program will not stop when it reads a PROB card; the END TAPE card must

be used to stop it.

XXV, BRIESC I/II COMPILER ERROR PRINTS

The BRLESC I/II compilers check for a limited number of types of
errors in programs being compiled. All possible errors are not detect-
ed, but some errors will cause one of the error prints listed below.
The type of error can be recognized either by the number that follows
the word ERROR and precedes th2 comma or by the "error word" that is

printed. The form of the error print is:

FORTRAN ERROR t,m Error Word AT w ON CARD cc

where
= type of error; is integer number.
m = ten col. field at which error was detected; m=0,1,
o0 DA
Error word = ten alphanumeric characters that describe the type
of error as listed below,
w = rest of the mth field on the card at time of error

detection.

108

cc = decimal card count of cards read by compiler.

After this error line is printed, another line is printed which is
usually the card on which the error occurred, although some undetected
errors may later cause an error print at a point where no error occurs.
On BRIESC I, when w=m=0, the error was prcbably on the previous card,
rather than on the card that is printed. It should be noted that the
probable reason for the error listed below may not be correct, the true

error may be quite different.

If any one of the following errors are detected by the compiler,
the program will not be executed but a dictionary of names that appeared
only once in the program will always be printed. If the LIST(START)
control card is being used, the error print will appear between the
source statements at the point at which the error was detected; other-

wise {t will appear before the dictionary.

After an error, compilation is continued until the end of the pro-

gram is encountered or until 128 errors have been detected.

TYPE ERROR WORD DESCRIPTION
1 ILL.CHAR. Illegal character on program card.
2 SYM,ST.NO. Symbolic statement number, not all decimal digits.
3 MIXED EXFR Mixed expression, two operands are not same type.
4 INT**FLT Integer raised to fl.pt. power is illegal.
5 IL.RETURN Tllegal RETURN statement, used in main program.
6 NO = IN DO No equals symbol at proper place in DO statement.
7 SUBFRS .>60 Tried to compile more than 60 subprograms. (255 on
BRLESC II)
8 BIG ADD.ID Big address is indexed., Program is too big.
LRLESC I ouly)
9 NO, CP.GOT0O No comma at proper place in computed GOTO statement.
10 ILL,STAT. Illegal statement.

11 FLT.INDEX Subscript involves a fl.pt. number.

12 ILL.DIM. Number of subscripts is not same as diwensionality
of the array.

109

TYPE ERROR WORD
13 ILL,COMMA
14 ASD,ST.NO
15 COMPLEX AR
16 EQU. TABLE
17 COM, ASGND
.18 ARRAY, REF
19 DICT.FULL
20 ‘CoL.7 No.
21 SENSE > 6
22 DO NO END
24 IL.EQUALS
25 IL. - BOOL
26 IL. / BOOL
28 IL,**BOOL
29 DRUM STAT.
30 IL.I0 LIST
31 FAP CODE
32 BAD TAPE 7
33 NO IDENT *
34 N>10 in NH
35 CONST POOL

DESCRIPTION
Comma is used improperly in an arithmetic ex-
pression.
Assigned statement number; same statement number
used twice, but not in succession.
Corplex type-statement or I in Colum 1,
EQUIVALENCE table is full. (BRLESC I allows about
700 different names for whole program. BRLESC II
allows about 400 names for each subprogram.)
COMMON name was previously assigned.
Array name used before it was declared.
Dictionary is full. (about 4000 names.)
Statement begins with a decimal digit.
Sense light or sense swit-h number greater than 6.
Statement number used in DO Statement never appear-
ed. (It may have been missed due to another errcr.)
Illegal = symbol or arithmetic was specified on the
left of the = symbol.
Illegal "not" operation on boolean card. (BRLESC
I only)
Boolean division is undefined. (BRLESC I only)
Boolean exponentiation is undefined. (BRLESC I
only)
Drum statements not allowed on BRLESC I/II.
Illegal input/output list; usually a name has not
been declared an array.
An * FAP card is not allowed on BRLESC I/II.
Temporary tape 7 gives persistent parity errors.
No identification card at beginning of program.
Alphanumeric constant of more than ten characters.
The constant pool is full, (1696 arrays and differ-
ent constants on BRLESC I and 1472 different con-
stants on BRLESC II.)

110

TYPE ERROR WORD
36 LABEL COMM
37 COM. TABLE
38 STP FULL
39 DOT FULL
40 ATP FULL
41 ARG FULL
42 FTB FULL
43 I>32 in AE
44 ILL,EQUIV
45 NON-SEXA.
46 IL.AS.0.T.
47 IL.AS.ADD
48 NO $ AS.O.
49 NON-DEC

50 IL.AS SYN
51 DM VAR 1ID.
) NOT , OR)
53 STPE FULL
54 SEL FULL
55 DIM, COMMA
56 LONG I NO.
57 DUPL. COM.
58 MAXTO NO I
59 EXTRA PUNC
60 BAD L.NAME

DESCRIPTION
More than 63 different COMMON labels.
The COMMON table is full. (750 names and labels on
BRIESC I, 1000 on BRLESC II within one subprogram
or main progvram.)
More than 800 dummy argument references.
More than 63 nested DO loops.
More than 64 dummy argument references in a state-
ment function.
Mnre than 100 subprogram arguments.
More than 50 subroutine names on F cards. (BRLESC I)
Arithmetic expression has too many operations
grouped to the right.
Illegal EQUIVALENCE statement.
Illegal character in a sexadecimal word or address.
Illegal BRLESC I/II assembly order type.
Illegal BRLESC I/II assembly address.
No $ symbol at end of BRLESC I/II assembly order.
Improper character in a decimal number.
Illegal SYN statement.
Dummy argumen:c was indexed in assembly order.
(BRLESC I)
improper punctuation.
More than 600 ENTRY dummy argument references.
More than 100 ENTRY names and dummy arguments.
Missing comma in DIMENSION.
Integer constant of more than 17 digits.
Duplicated name in COMMON.
Number on MAXT or MAXO card is aot an integer.
Extra punctuation symbol.
Bad logical operation or relation name or illegal

peric .

111

TiPE
61
62
63

64
65
66
67
68
69
70
71
72
73
74

BRLESC

75
76
77
78

79

80
81

82
83
84

ERROR WORD
DATA BAD =
DAT.IL,NO.
DATA FULL

HUNG UP
VAR DIMENS

DUMMY VAR.

DUM IN COM

CHANGE + -

m=ss===> 24
AR, NO (,)

ERRORS> 128
AR, FORMAT (
SUBS-N0OS< 0
= IN IF

DESCRIPTION
Equal symbol at illegal place in DATA statament.
Illegal number in a DATA statement.
Too much data in DATA statements. (About 1000
names and numbers on BRLESC I, 2000 on BRLESC II.)
Computer stopped during compilation.
Variable dimension in EQUIVALENCE.
Dummy argument in EQUIVALENCE.
Dummy argument in COMMON.
Obsolete "CHANGE + AND -" control card.
More than 24 "=" symbols in one statement.
Array name not followed by '"(" or "," or "),
More than 128 compile errors.
Subscript on array format name.
Constant pool and subroutines overlap storage.

"=" instead of .EQ. .n IF statement

ITI has the following additional error prints:

NO § E.ST
DIM PUNCT.
DUPL,DIM.
SPEC,IATE

ADJ ,DIMENS

DIMENS > 3
IABEL > 255

DICT2.FULL
ST.NO.PT.
COMM.BACK

A statement doesn't end where it should.

Improper punctuation in a DIMENSION statement.

A name is declared as an array more than once.

A specification statement appeared after the first
executable statement.

Illégal adjustable dimensions; either the array

or the dimensions are not dummy arguments.

More than three dimensions either declared or used.
A common label name appears more than 255 times in
one subprogram.

The second part of the dictionary is full,

A statement number contains a decimal point.
EQUIVALENCE attempts to extend the beginning of
common backward. One of the names from the er-
roneous equivalence will replace w in the error

print.
112

TYPE ERROR WORD
85 IL.EQUIV.
86 1AB.LENGTH
87 EQUIV.SUB
88 DUM ARG > 60
89 NOT (OR $
90 NOT , OR §
91 EXT.STAT.
92 TYPE STAT.
93 NOT COMMA
94 NOT INTEG.
95 FUN NO DUM
96 LONG STAT.
97 NO OPERAND
98 NOT LOGIC=
99 MACH ERROR
100 INT**NO.< 0
101 NoT)

DESCRIPTION
Illegal EQUIVALENCE, probably equivalenced two
common variables or caused nonconsecutive array
elements. One of the names from the erroneous
equivalence will replace w in the error print.
A labeled common block is not the same length as
it was in some previous subprogram. The label
will replace w in the error print.
An EQUIVALENCE subscript has an improper number
of dimensions., It must be one or the number de-
clared. The name involved will replace w in the
error print.
More than 60 dummy arguments.
Improper punctuation, should be (or §$.
Improper punctuation, should be , or §$.
Improper punctuation or name in an EXTEPNAY -rate-
ment,
Improper punctuation or name in a type starement.
Improper punctuation, should be comma.
Improper type of name or constant, should be
integer.
No dummy arguments for function subprogram.
Too many operations in one statement, statement
doesn't end where it should, or more than 199 sub-
scripts in one statement.
Aa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>